

Tulsa Chapter SPEE Presentation Estimating Reserves for Unconventional Shale Resource Plays

August 11, 2011

Tom Tella Netherland, Sewell & Associates, Inc.

Disclaimer

The materials contained in this presentation are intended to show general information regarding various shale plays. Actual estimates of reserves and resources and other technical and economic factors require specific information about the properties being evaluated and technical expertise in the field of petroleum property evaluations.

Discussion Outline

- What is the big deal about the shale plays?
- Estimating Reserves Critical Issues
 - Early development Reserves techniques
 - Maturing Plays Determining Ultimate Well Spacing
- Overview of Selected Plays
 - Barnett
 - Fayetteville
 - Haynesville
 - Marcellus

Summary by Shale Play

Shale Basin	<u>Barnett</u>	<u>Fayetteville</u>	<u>Woodford</u>	<u>Haynesville</u>	<u>Marcellus</u>	Eagle Ford
Net Acres ('000's)	2,549	2,009	749	3,334	6,600	1,633
Depth (Ft)	6,500-8,500	1,000-7,000	6,000-11,000	10,500-13,500	4,000-8,500	9,000-13,000
Thickness (Ft)	100-600	20-200	120-220	200-300	50-200	100-300
OGIP (TCF)	700	200	90	900	1,000+	250
Est. Rec. Resources (TCF)	64	37	16	109	96	21
Cum Prod (TCF)	9.0	1.7	0.8	1.2	?	0.1
No. of Wells	14,000	3,000	1,200	800	600+	120
EUR/well (BCF)	2.4	2.6	4.3	6.2	4.2	5.1
30-day IP (MMCFD)	2.1	2.5	4.0	9.5	4.5	6.0
Avg Well Cost (\$MM)	2.6	2.8	5.0	8.0	3.9	5.5
Break-Even (\$/MCF)	4.95	4.06	5.15	4.81	4.17	4.57

Productive Shale Supply Implications

Recent Acquisitions and Joint Ventures (JVs) 13 Transactions \$33 Billion Dollars

Upstream JV Deals (Chronologically):

- Total Chesapeake, Barnett: January 2010 25% interest in 270,000 acres, \$2.25 billion total split into \$800 million cash + \$1.45 billion carry of Chesapeake's share of drilling and completion costs. Price ~\$33,330/acre
- Mitsui Anadarko, Marcellus: <u>February 2010</u> 32.5% interest in approximately 300,000 acres, \$1.4 billion total with all money being used to carry Anadarko over the next 3 years. This deal allows Mitsui the rights to participate and purchase up to 32.5% in future leaseholds with Anadarko. Price ~\$14,360/acre
- Reliance Atlas, Marcellus: <u>April 2010</u> 40% interest in approximately 300,000 acres, \$1.699 billion total split into \$339 million cash + \$1.36 billion carry of Atlas's share of capital costs. Price ~\$14,160/acre. This JV has since acquired an additional ~42,000 acres (at \$4,532/acre).
- Reliance Pioneer, Eagle Ford: June 2010 45% interest in approximately 263,000 acres, \$1.315 billion total split into \$263 million cash + \$1.052 billion carry of Pioneer's share of capital costs and some midstream assets. Price ~\$11,110/acre
- Statoil Talisman, Eagle Ford: <u>August 2010</u> 50% interest in approximately 134,000 acres \$1.325 billion total \$180 million from Statoil to buy into Talisman's previous approximately 37,000 acres with the rest buying approximately 97,000 acres from Enduring Resources. Price ~\$19,780/acre
- CNOOC Chesapeake, Eagle Ford: <u>November 2010</u> 33% Interest in 600,000 acres for \$2.16 billion split \$1.08 billion in cash + \$1.08 billion carry of Chesapeake's share of drilling and completion costs. This deal allows CNOOC the rights to participate and purchase up to 33.3% in future leaseholds with Chesapeake. Price ~\$10,800/acre
- Sasol Talisman, Montney: <u>December 2010</u> 50% interest in approximately 57,200 acres for C\$1.05 billion total C\$262.5 million cash + C\$787.5 million in drilling and completion costs. Price ~C\$36,710/acre
- PetroChina Encana, Montney: <u>February 2011</u> 50% interest in approximately 635,000 acres, 255 MMCFED of production, 700MMCFD of processing capability, 3,400 km of pipeline, and the Hythe natural gas storage facility for C\$5.4 billion total. Price ~C\$17,010/acre
- KNOC Anadarko, Eagle Ford: March 2011 33.3% interest in approximately 240,000 acres of Eagle Ford shale and an additional 48,000 acres of Pearsall shale for \$1.55 billion by funding capital costs. Price ~\$16,150/acre

Upstream Acquisitions:

- Shell- East Resources, Marcellus: May 2010 Interest in ~650,000 Marcellus acres and 60 MMcfe/d for \$4.7 billion in cash. Price ~\$7,230/acre
- Hess TRZ Energy, Bakken: November 2010 167,000 acres for \$1.05 billion in cash. Price ~\$6,290/acre
- Chevron/Reliance Atlas, Marcellus, Utica: <u>November 2010</u> 486,000 acres of Marcellus, 623,000 acres of Utica, and 49% interest in Laurel Mountain Midstream for \$4.3 billion total split 3.2 billion cash and 1.1 billion debt. Price ~\$3,880/acre
- BHP Billiton Chesapeake, Fayetteville: February 2011 487,000 acres and over 400 MMCFD for \$4.75 billion in cash. Price ~\$9,750/acre

Shale Projects Worldwide

Early Development Techniques

- Analogy to other Shale Plays
 - Use type curves from another shale plays (hyperbolic exponents ranges 0.8 to 1.8)
 - Volumetric analysis Drainage areas 40 to 160 acres and recovery factors 5 to 30 percent
 - Estimating horizontal well recovery based on multiple of vertical well completions (Generally 3 to 6 times)
 - EUR Distributions from analogous plays (i.e. Tier I Barnett shale area P75-P25 1.0 – 3.0 Bcf)

General Shale Forecast Parameters

Projection Parameters	<u>Marcellus Horizontal*</u>	<u>Barnett</u>	<u>Fayetteville</u>	<u>Woodford</u>	<u>Haynesville</u>
IP (MCF/Mo)	80,000 – 150,000	80,000 – 90,000	50,000 – 80,000	60,000 – 120,000	300,000 – 700,000
De (%) (instantaneous)	95 - 99	90 – 95	80 – 85	90 – 99	99 – 99.9
N	1.0 – 1.5	1.5 – 1.75	1.0 – 1.3	1.0 – 1.3	0.8 – 1.2
Df (%)	6	6	6	6	6
EUR (BCF) – Tier I**	1.5 – 5.0	1.0 – 3.0	1.5 – 4.0	1.5 – 4.0	2.5 – 7.0
EUR (BCF) – Tier II**	0.5 – 1.5	0.5 – 1.5	0.5 – 2.5	0.5 – 2.0	1.0 – 4.0

* Based on limited data

* * P75 – P25 EURs

Methodology Life Cycle

Performance Variability

Free gas in the natural and induced fracture system & high perm matrix porosity contribution

Gas from siliceous shale micro porosity

Release of adsorbed gas on organic material (TOC) with low perm matrix porosity contribution

Rate

Actual Well Performance Variability

Haynesville Shale Production Variability

From Petrohawk Energy investor presentation

Decline Curve Analysis How much data is needed?

~100 Days of Production ~900 Days of Production 10,000 10,000 Rate (MCFD) 1.000 1.000 My islamy 100 100 0 200 400 600 0 200 00t 600 800 300 Days Days

(100 - 100 B)	n (Hyp exp)	Df (%/year)	50-year EUR (BCF)
	1.5	4	5.0
►	1.5	6	4.4
	1.5	8	3.8

	NEES IN 18 19 19
	50-year
n	EUR
(Hyp exp)	(BCF)
1.2	3.3
1.5	4.4
1.8	5.5

Horizontal Development – Proved Bookings

Maturing Plays – Critical Issues

- Regional Overview
- Geological Aspects
 - OGIP
 - Contributing Rock Volume
- Recovery Factor
- Ultimate Well Spacing
- Defining Proved Areas Reliable Technology

Regional Overview

- Barnett Shale
 - Projected ~12,000 wells
 - Analyzed ~100+ logs & 5+ cores
- Fayetteville Shale
 - Projected ~3,000 wells
 - Analyzed ~50 logs & ~10+ cores
- Haynesville Shale
 - Projected ~800 wells
 - Analyzed ~100 logs & ~10+ cores
- Eagle Ford Shale
 - Projected ~200 wells
 - Analyzed ~100 logs & ~10+ cores

Haynesville Initial Potential Map (2008) OGIP - Does not tell the whole story

Target Thickness Versus Gas-in-Place

200 BCF/mi² Gas-in-Place

0.1 BCF/Foot

200 BCF/mi² Gas-in-Place

BCF/Foot

2,000 Feet Thick

Contributing Rock Volume

 $d_v =$ Lateral Length (3,000' to 5,000')

 d_x = Well Spacing or Effective Frac Distance (500' to 1,500')

 d_z = Net Shale Thickness or Effective Frac Height (50' to 300')

 $d_x * d_y * d_z = Contributing Rock Volume$

Shale Performance Analysis Moving Average Methodology

- Premise 1: OGIP, per-well EUR, well spacing, and recovery factor are interrelated.
- **Premise 2**: The statistical nature of shale plays requires aggregation of data in a meaningful way.
- Premise 3: Aggregation of data over a square mile is meaningful.

Moving Average Mapping

Search Radius 3,000 feet 648 acres **Each Grid Node** Well Count • Total EUR • Average EUR • OGIP **Moving Average** Grid 1,000 ft x 1,000 ft

Example: Well Count Contour Map

Production data posting location (midpoint of perforation data)

Total EUR (BCF/mi²) Moving Average Map

Influenced by individual well EURs and number of wells per mi²

Calculated Recovery Factor Map

NSAI Total EUR (BCF/mi²) / NSAI Screening Total OGIP (BCF/mi²)

Recovery Factor Versus Well Count

Average EUR Versus Well Count

Total Gas Ultimate

Contours are BCF of estimated ultimate gas recovery per square mile

Reservoir Permeability versus Recovery Factor

Volumetric and Performance

Barnett Shale Volumetric Analysis

160 BCF OGIP Recovery Factor Well Spacing Analysis

EUR per Well		Recovery Factor (percent)					
Array	(BCF)	40%	30%	20%	10%	5%	
Icres	160	16	12	8	4	2	
ing, a	120	12	9	6	3	1.5	
Spac	80	8	6	4	2	1	
Well	40	4	3	2	1	0.5	

Barnett Shale Decline Curve Performance Analysis

		Gas EUF	R (MMCF)			
Year	P25	Mean	P50	P75	Avg. Lateral Length (Feet)	
2010	4,600	3,700	3,300	2,300	3,055	

Critical Considerations for Proved Area

- Enough production data to make reasonably certain EUR projections
- Enough well EUR data to be statistically significant X Minimal (<10), Sufficient (~40), Optimal (>100)
- Level of EUR relative to economic (PW10) X Minimal (P50), Sufficient (P75), Optimal (P90)
- EUR versus demonstrated well spacing X X Minimal (pilot down spacing), Sufficient (statistically significant developed areas), Optimal (all wells drilled on constant spacing)
- Data supporting hydrocarbons-in-place
 Minimal (logs), Sufficient (+ production), Optimal (+ core)
- Data supporting geologic consistency X Minimal (regional mapping), Sufficient (+ local log analysis), Optimal (+ seismically defined structure)
- Data supporting leasehold and certainty of locations being drilled in timely manner
 Minimal (say they will), Sufficient (history of drilling), Optimal (corporate level plan)
- Individual reserves calls require judgment based on specific data

Resources Plays Example of Leverage with Horizontal Wells

1.	Property maturity	Early	Moderate	Mature
2.	Data rich/poor	Poor	Good Well Control	Rich
3.	Consistency	?	Good	Very Good
4.	Geologic understanding	Low	Still Learning	High
5.	Analogy to other areas	Low	Good	Good
6.	Economic robustness	Marginal	Strong (most wells)	Very Strong
7.	Leverage effect	?	?	?

"... Evidence using Reliable Technology..."

Fayetteville Area Well Control

Significant Local and Regional Data

Enough EUR data to be statistically significant Minimal (4), Sufficient (20), Optimal (100s)

Purple line designates contiguous development areas.

The overall Fayetteville trend area has 100s of wells leading to regionally optimal data set. We have some degree of confidence in the regional distribution of EURs.

Local contiguous development areas are defined by grey line areas.

Areas with statistically significant number of PDP wells (1-3 wells per section) would be considered candidates for Tier 1 areas based on the data concentrations only.

Lesser concentrations of data would be considered as Tier 2 and Tier 3 areas where there would be less leverage from a PDP-to-PUD ratio.

Toe-heel PUDs would be considered in Tier 1 and Tier 2 areas where the data are considerably certain.

Quantity and Quality of Local Data

Assuming the EUR distribution in these local areas is **significantly** economic, the area within grey lines could be considered proved, and if the data are consistent, additional areas outside the grey but internal to the surrounding data could also be considered proved.

Not all external area between the grey and purple lines would be considered proved but not necessarily excluded from being proved.

This also assumes gas-in-place, geologic consistency, and leasehold and corporate plan are also documented and supported with a degree of certainty.

Shale Isopach and Structure

Barnett Shale

EXHIBIT 12: STRATIGRAPHY OF THE BARNETT SHALE					
	Period Group/Unit				
an		Tasaatiaa	Clear Fork Grp		
ermi		Leonardian	Wichita Grp		
Pe		Wolfcampian	Cisco Grp		
ian		Missourian	Canvon Grp		
var		Desmoinesian	Strawn Grp		
Isyl		Atokan	Bend Grp		
em		Morrowan	Marble Falls		
Р		Monowan	Limestone		
c		Chesterian			
pia		- Meramecian	Barnett Shale		
cian Mississip		Osagean	Chappel Limestone Viola Limestone		
Ordovic		Canadian	Simpson Grp Ellenburger Grp		
Source: Hayden and Pursell, 2005 ¹²⁹ AAPG, 1987 ¹³⁰					

EXHIBIT 13: BARNETT SHALE IN THE FORT WORTH BASIN

Source: ALL Consulting, 2009

Barnett Production

Chronology of Barnett Shale Completion Techniques

Barnett Shale Type Curve

Yearly Gas Ultimate Distribution

18 16 Gas EUR (BCF) Average Lateral Length P10 P25 P50 P75 P90 Year Mean (Feet) Count Pre 2007 4.2 3.0 2.3 2.0 1.2 0.6 3.167 1.116 2007 2.6 2.4 1.4 3,073 1,179 14 4.8 3.6 0.8 2008 4.6 3.5 2.6 2.4 1.5 0.9 3,013 956 Gas Estimated Ultimate Recovery (BCF) 2009 5.8 4.3 3.3 3.0 1.9 1.2 3,248 477 2010 6.5 4.6 3.7 3.3 2.3 1.5 3.055 448 12 10 8 NOT THE REPORT OF THE REPORT OF 6 00 4 2 0 10 20 30 40 50 60 70 80 90 100 0 Greater Than (Percent)

Barnett Shale Core Area

• Pre 2007 • 2007 • 2008 • 2009 • 2010

Completion Variability

Completion Variability

NSAI Estimates of Barnett Shale Wells

Completion Date

Fayetteville Shale

Fayetteville Production

Fayetteville Shale Type Curve

Yearly Gas Ultimate Distribution

Completion Variability

EUR Estimates of Fayetteville Shale Wells

nsa!

Haynesville Shale

EXHIBIT 16: STRATIGRAPHY OF THE HAYNESVILLE SHALE

Peri	iod	Group/Unit			
		Navarro			
		Taylor			
		Austin			
ns		Eagle Ford			
lceo		Tuscaloosa			
retz		Washita			
0		Fredericksburg			
		Trinity Group			
مر مرمر مر		Nuevo Leon			
		Cotton Valley Group			
	Upper	Haynesville			
ssic		Smackover			
ura		Norphlet			
-	Middle	Louann			
	Lower	Werner			
Triassic	Upper	Eagle Mills			
Sourc	Source: Johnson et al, 2000143				

EXHIBIT 17: HAYNESVILLE SHALE IN THE TEXAS & LOUISIANA BASIN

Source: ALL Consulting, 2009

Haynesville Shale Gas Play Limits

Chesapeake Cabot Comstock El Paso **EnCana** Exco **GMXR** Petrohawk **PennVirginia**

Source of Data

Base Map: Chesapeake 2008 Investor and Analyst Meeting; Haynesville limits by operator: company presentations

Haynesville Production

Haynesville Type Curve

Yearly Gas Ultimate Distribution

Completion Variability

EUR Estimates of Haynesville Shale Wells

NSAI

Marcellus Shale

EXHIBIT 18: STRATIGRAPHY OF THE MARCELLUS SHALE

Period		Group/Unit		
Penn		Pottsville		
Miss		Pocon	0	
		Conev	vango	
		Conne	aut	
_	Upper	Canadaway		
		West Falls		
		Sonyea		
niar		Genesee		
VOL		Tully		
De		u	Moscow	
	Middle	Lu	Ludlowville	
		am	Skaneateles	
		Н	Marcellus	
		Onandaga		
	1	Tristates		
	Lower	Helde	Helderberg	
Source: Ar	thur et al, 200814	48		

EXHIBIT 19: MARCELLUS SHALE IN THE APPALACHIAN BASIN

Source: ALL Consulting, 2009

Marcellus Shale Range Resources EUR Estimates (January 2009)

Range Resources "The BMO Capital Markets 2009 North American Unconventional Gas Conference", January 13, 2009, page 21.

Resources Plays – Are All Shale Plays the Same?

Analogy Type Curves – 5 MMCFD

Shale Gas is Easy?

