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Key Questions for Horizontal Success 

• Where Do I Land the Horizontal Well? 
• How Do I Complete The Well? 
• Where Do I Complete The Well? 
• How Many Completions Do I Need? 
• How Do I Fracture Stimulate The Well? 
• What Fracturing Fluid Do I Use? 
• What Pump Rate Should I Use? 

 
 



Key Questions for Horizontal Success 

• Where Do I Land the Horizontal Well? Core 
• How Do I Complete The Well? Permeability/Core 
• Where Do I Complete The Well? Core 
• How Many Completions Do I Need? Permeability 
• How Do I Fracture Stimulate The Well? Core 
• What Fracturing Fluid Do I Use? Permeability/Core 
• What Pump Rate Should I Use? Core 

 
* Core Represents Mineralogy, Rock and Geomechanics 



Keys to Horizontal Success 

• Design For Success Through Petrophysics 
– Ductility (Mineralogy, Rock & Geomechanics) 
– Permeability 

 

• Completion(s) & Stimulation(s) 
– Fracture Length & Lateral Length 

 
• Execute, Execute, Execute 



Presentation Outline 

• Historical Perspective: Horizontal Wells 
• Horizontal Well Characterization & Objectives 
• Basis of Water Frac Designs – Ductility 
• Permeability 
• Geomechanics 
• Summary 
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Horizontal Drilling Boom 
1998 Only 40 Horizontal Capable Rigs In U.S. 
2008 28% Of U.S. Rigs Horizontal Capable 
2011 57% Of U.S. Wells Are Drilled Horizontal  

Horizontals: A Historical Perspective 

East Texas 



Well Characterization & Objectives 
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Metrics Used To Determine The Optimum  
Distance Between Fractures/Compleions 

The IP And Annualized Rate Metrics Are Based On The 
Distance Between Fractures When Interference Occurs At 

30 Days Or 365 Days, Respectively. 



Well Characterization & Objectives 
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Effect Of Lateral Length On Completion Optimization 

The Longer The Lateral The  
More Completions To Be Optimal 



Well Characterization & Objectives 

0

5

10

15

20

25

0 5 10 15 20 25 30

N
et

 P
re

se
nt

 V
al

ue
, M

$

Number of Fractures

500 Feet

1,000 Feet

1,500 Feet

Effect Of Fracture Length On Completion Optimization 

The Longer The Fractures The  
More Completions To Be Optimal 



Well Characterization & Objectives 
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Presentation Outline 

• Historical Perspective: Horizontal Wells 
• Horizontal Well Characterization & Objectives 
• Basis of Water Frac Designs – Ductility 
• Permeability 
• Geomechanics 
• Summary 

 



Basis of Fracture Design 

Perfect Transport 

Imperfect Transport 



Schematic of a Water-Frac 

Un-propped Crack Tests Integrate The  
Lab Results With The Field & 

Explains The Effect Of Poor Proppant Coverage!  
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Un - Propped 



Water Frac Guidelines 
 Must Depend on Un-Propped kFw 

As Long As FCD-Vert > 2 
The Propped Fracture  
Height Doesn’t Matter!  

For (kfw)Un-propped = 1 mdft 
HF-Un-propped <  50 feet 
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Why Un-Propped Crack Testing? 

With Un-Propped 
kfw A Shale 

Reservoir Can 
Support Hundreds 

Of  Feet Of   
Un-Propped 

Fracture! 
 

This Is Why Water-Fracs Should Only Be  
Applied To Tight Unconventional  

Reservoirs & Proppant Is Always Needed! 
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Water-Frac’s Must Depend On  

Un-Propped Fracture Conductivity 



Mineralogy & Ductility 
Proppant And Fluid Selection & Quantity: 

Mineralogy  
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Clay Constituents Less Than 40% 
Minimal Swelling Clays (Smectite) 



Young’s Modulus & Brittleness 
Proppant And Fluid Selection & Quantity: 

Young’s Modulus 

Young’s Modulus > 3.5 x 106 psi 
Fits Clastic Modulus Correlation 



Un-Propped Crack Test & Ductility 
Proppant And Fluid Selection & Quantity: 

Un-Propped Crack Conductivity 
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Basis of Fracture Design 

Perfect Transport 

Imperfect Transport 



Water Frac Design Example 
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Static Young’s Modulus, x 106 psi
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Fluid Viscosity, 1 cP
Frac Height, 300’

40/70 Ottawa Sand Barnett Design: 
 
• Young’s Modulus 4 x 106 psi 

  25 BPM Need 35 mlbs 
  50 BPM Need 40 mlbs 
100 BPM Need 45 mlbs 



Water Frac Design Example 

Barnett Design: 
 
• Young’s Modulus 4 x 106 psi 

  0.25 PPG Need 250 mgals 
  0.50 PPG Need 110 mgals 
  1.00 PPG Need   60 mgals 
 
Minimum Fluid Requirement 
Does Not Consider Dilation! 



Presentation Outline 

• Historical Perspective: Horizontal Wells 
• Horizontal Well Characterization & Objectives 
• Basis of Water Frac Designs – Ductility 
• Permeability 
• Geomechanics 
• Summary 
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Post Fracture Decline Analysis Example 
Logistical & Material Sourcing Issues 
Required An Extended Shut Down:  
So We Monitored Pressure Decline! 

Stage 6 Stage 2 

Stage 1 
Stage 5 

Stage 3 

Stage 4 



C
al

c 
B

H
P

(k
P

a)

55
00

0
60

00
0

65
00

0
70

00
0

75
00

0
80

00
0

sqrt(dt)
2 4 6 8 10

dP/d[sqrt(dt)]

Isip

Blessed
Pc 62235.91
Tc 5.28
EFFc 0.86
Isip 83083.99
dPs 20848.08

Blessed
Pc 81427.85
Tc 0.57
EFFc 0.59
Isip 83083.99
dPs 1656.14 Used The Shut Down To 

Make Real Time Completion 
& Stimulation Decisions! 

Post Fracture Decline Analysis Example 
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Post Fracture Decline Analysis Example 
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Post Fracture Decline Analysis Example 
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Geomechanics of Horizontal Wells 
σv = 10,000 psi, σHmax = 7,500 psi, σHmin =6,000 psi  

α = 0o,   BD = 4,000 psi 
α = 30o, BD = 4,154 psi 
α = 60o, BD = 5,574 psi 
α = 90o, BD = 8,500 psi 

β = 90o 



Geomechanical Implications 
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Two Interfering Fractures w/ 
Contained Fracture Geometry 

Slide Keys: 
When The Distance Between 

The Fractures Is > 2 Times The 
Fracture Height Minimal 

Effect On Fracture Width & 
Flow Resistance! 



Geomechanical Implications 

What Is The Likely Fissure Direction In The Current 
Stress State Whereby: 

• The Natural Fissures Are Open, 
• The Fissures Are Conductive, And 
• Potentially Contributory To Well Performance 

Such A Natural Fissure  
Is Deemed Critically  

Stressed  

µ 

µ 



Geomechanical Implications 

The Object Of The Completion(s) & Fracture 
Stimulation(s) Is To Effectively Contact As  
Much Reservoir As Possible: 

– Micro-Seismic Data Used To Assess Contacted 
Volume Or Stimulated Reservoir Volume 
Where: 

SRV = L x H x W of Micro-Seismic Event Map 
  Often 2(xf) x Hf  x LL 



Geomechanical Implications 
Stimulated Reservoir Volume 
 

Fisher 2002 

Bigger The Frac Volume The Greater 
The Stimulated Reservoir Volume & 

The Greater The Hydrocarbon Recovery 



If SRV Important How Do You Get More? 

Geomechanical Implications 

Sanchez-Nagel 

Study Showed That Higher  
Fluid Viscosity Slightly Increased  

The Tensile Failure Area 

Study Showed That Low  
Fluid Viscosity Dramatically  
Increased The Shear Failure 



Geomechanical Implications 
But Does Complexity Or Stimulated Reservoir 

Volume Add Up To Hydrocarbon Recovery 
 

Cipolla 

Britt, No Fracture Network
6 Induced Fractures w/ 100 mD-ft

Britt, No Fracture Network
8 Induced Fractures w/ 100 mD-ft

Study Showed That SRV Not 
Very Effective, Neither Was Induced  

Fracture For That Matter 

Additional Simulations Show That SRV 
May Not Be Critical Or Is It? 

What About Over The Long Term? 



Keys to Horizontal Success 

• Design For Success Through Petrophysics 
– Ductility (Mineralogy, Rock & Geomechanics) 
– Permeability 

 

• Completion(s) & Stimulation(s) 
– Fracture Length & Lateral Length 

 
• Execute, Execute, Execute 
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