Keys to Successful Multi-Fractured Horizontal Wells In Tight and Unconventional Reservoirs

Presented by: Larry K. Britt NSI Fracturing & Britt Rock Mechanics Laboratory

Key Questions for Horizontal Success

- Where Do I Land the Horizontal Well?
- How Do I Complete The Well?
- Where Do I Complete The Well?
- How Many Completions Do I Need?
- How Do I Fracture Stimulate The Well?
- What Fracturing Fluid Do I Use?
- What Pump Rate Should I Use?

Key Questions for Horizontal Success

- Where Do I Land the Horizontal Well? Core
- How Do I Complete The Well? Permeability/Core
- Where Do I Complete The Well? Core
- How Many Completions Do I Need? Permeability
- How Do I Fracture Stimulate The Well? Core
- What Fracturing Fluid Do I Use? Permeability/Core
- What Pump Rate Should I Use? Core

* Core Represents Mineralogy, Rock and Geomechanics

Keys to Horizontal Success

- Design For Success Through Petrophysics
 - Ductility (Mineralogy, Rock & Geomechanics)

– Permeability

Completion(s) & Stimulation(s)
– Fracture Length & Lateral Length

• Execute, Execute, Execute

Presentation Outline

- Historical Perspective: Horizontal Wells
- Horizontal Well Characterization & Objectives
- Basis of Water Frac Designs Ductility
- Permeability
- Geomechanics
- Summary

Horizontals: A Historical Perspective

Metrics Used To Determine The Optimum Distance Between Fractures/Compleions

Effect Of Lateral Length On Completion Optimization

Number of Fractures

Effect Of Fracture Length On Completion Optimization

Presentation Outline

- Historical Perspective: Horizontal Wells
- Horizontal Well Characterization & Objectives
- Basis of Water Frac Designs Ductility
- Permeability
- Geomechanics
- Summary

Basis of Fracture Design

Schematic of a Water-Frac

Un-propped Crack Tests Integrate The Lab Results With The Field & Explains The Effect Of Poor Proppant Coverage!

Water Frac Guidelines Must Depend on Un-Propped k_Fw

Why Un-Propped Crack Testing?

With Un-Propped k_fw A Shale Reservoir Can Support Hundreds Of Feet Of Un-Propped Fracture!

This Is Why Water-Fracs Should Only Be Applied To Tight Unconventional Reservoirs & Proppant Is Always Needed!

Water-Frac's Must Depend On Un-Propped Fracture Conductivity

Area 4,5, & 7 Represents Woodlawn & Blocker Fields Where Taylor (CV) Sand Is 100+ Feet Thick!

Young's Modulus & Brittleness

Proppant And Fluid Selection & Quantity:

Young's Modulus

Un-Propped Crack Test & Ductility

Proppant And Fluid Selection & Quantity:

Un-Propped Crack Conductivity

Basis of Fracture Design

Water Frac Design Example

Water Frac Design Example

Barnett Design:

Young's Modulus 4 x 10⁶ psi 0.25 PPG Need 250 mgals 0.50 PPG Need 110 mgals 1.00 PPG Need 60 mgals

> Minimum Fluid Requirement Does Not Consider Dilation!

Presentation Outline

- Historical Perspective: Horizontal Wells
- Horizontal Well Characterization & Objectives
- Basis of Water Frac Designs Ductility
- Permeability
- Geomechanics
- Summary

Dun E MMnei

Presentation Outline

- Historical Perspective: Horizontal Wells
- Horizontal Well Characterization & Objectives
- Basis of Water Frac Designs Ductility
- Permeability
- Geomechanics
- Summary

Geomechanics of Horizontal Wells

What Is The Likely Fissure Direction In The Current Stress State Whereby:

- The Natural Fissures Are Open,
- The Fissures Are Conductive, And
- Potentially Contributory To Well Performance

The Object Of The Completion(s) & Fracture Stimulation(s) Is To Effectively Contact As

Much Reservoir As Possible:

Micro-Seismic Data Used To Assess Contacted
Volume Or Stimulated Reservoir Volume
Where:

SRV = L x H x W of Micro-Seismic Event Map Often $2(x_f) \times H_f \times L_L$

Stimulated Reservoir Volume

If SRV Important How Do You Get More?

But Does Complexity Or Stimulated Reservoir Volume Add Up To Hydrocarbon Recovery

Additional Simulations Show That SRV May Not Be Critical Or Is It? What About Over The Long Term? Study Showed That SRV Not Very Effective, Neither Was Induced Fracture For That Matter

Keys to Horizontal Success

- Design For Success Through Petrophysics
 - Ductility (Mineralogy, Rock & Geomechanics)

– Permeability

Completion(s) & Stimulation(s)
– Fracture Length & Lateral Length

• Execute, Execute, Execute