Recent Decline Models for Resource Plays

John Lee University of Houston 1 February 2012

Important Digression First – State of New UH Petroleum Engineering Program

- In third year of undergraduate program
 - About 300 students enrolled
- Evening Masters program continues strong
 - About 80 students enrolled
- PhD research program targets growth
 - Currently 'housed' in Chemical Engineering
- Some needs
 - More internships for undergrads, particularly foreign nationals
 - More permanent faculty

Back to Decline Models: We Have a Problem

- Forecasting methods we use in conventional reservoirs may not work well in
 - Tight oil, gas
 - o Gas, oil shales
 - Unconventional resources generally

Decline Curves: Approaches

Major categories

- Arps empirical model
 - As originally proposed
- Theoretical/semi-theoretical models
 - Long-duration linear flow
- Recent empirical models
 - Valkó "Stretched Exponential" model
 - Duong model

500

Critique of Arps Model

Requires stabilized (not transient) flow for validity

$$q = q_i \frac{1}{(1 + bD_i t)^{(1/b)}}$$

 Transient flow likely for most, possibly all,

- life of well in ultra-low permeability reservoirs
- Best-fit "b" values almost always >1
- Hyperbolic decline equation derived assuming b constant (explicit in Arps' original paper)
- Extrapolation to economic limit with high b value can lead to unrealistically large reserves estimates

Arps: Keeping Reserves Estimates Reasonable

- Common method: Use best-fit "b" until predetermined minimum decline rate reached; then impose exponential decline
- Problems
 - Extrapolation with best-fit *b* problematic apparent "best" *b* decreases continually with time
 - Appropriate minimum decline rate based on observed long-term behavior in appropriate analogy – unavailable in new resource plays

Characteristics of Ideal Decline Model for Low Permeability

- Fits production data during transient flow, continues to fit during stabilized flow
- Forecasts reasonable even with limited historical production data available
- Leads to realistic reserves estimates

Valkó Decline Model – Stretched Exponential (SEDM)

Empirical model

$$q = q_i \exp\left|-\left(\frac{t}{\tau}\right)^n\right|$$

- 'Validated' for wells with both transient and stabilized flow in Barnett Shale (horizontal, multi-stage fractures, Carthage Cotton Valley (vertical, layered, some depleted), others
- Three-parameter model, like Arps
- Forecasts based on limited history unreliable

I																	
						Initial									Single-		
				Bottomhole		Pressure	Initial	Net		Avg. Eff.	Avg. Eff.	Avg. Water	Reservoir		Value	1 de	<u> </u>
	Case	Heterogeneity		Temperature	Depth	Gradient	Pressure	Thickness	No. of	Porosity	Perm.	Saturation	kv/kh	ky/kx	Layer	Rese I	1
	No.	Investigated		(deg F)	(ft)	(psi/ft)	(psia)	(ft)	Layers	(frac.)	(md)	(frac.)	(frac.)	(frac.)	Properties	, t	
	1 (Base)	Frac Half-Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	27.	Frac Half-Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	28.	Frac Half-Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	29.	Frac Half-Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	30.	Frac Half-Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	31.	Frac Half-Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
\geq	32.	Absolute Frac Perm.		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	33.	Absolute Frac Perm.		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
/	34.	Absolute Frac Perm.		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
_ //	35.	Absolute Frac Perm.		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	36.	Unequal Wing Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
<i>′</i>	37.	Unequal Wing Length		400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	38.	Unaqual in Length	nn'	40 .	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	39.	Unequal Frag Derm.		40 .	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	42.	Un qual Fras.Perm.		/10.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	43.	Paqual Fragmann.	\mathbf{O}	400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	55.	Frac w/Stress-Dep Frac Perm,	Resin-Coated Sand	400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	56.	Frac w/Stress-Dep Frac Perm,	Resin-Coated Sand	400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	57.	Frac w/Stress-Dep Frac Perm,	Bauxite	400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	:
	58.	rac w/Strees_Dec Frac Perm,		400	18 000	0.1	16.200.	200.		066 7	0.00901666	0 364134	0.001		Yes	No	:
	40.					0.5				.066 68						9	1
	41.					0.1	10.00	20		0.060							:
		luviiliy	PIUUIII	yuı			Luu						UU	UU			
			Initial									Single-	Stress-		Effective	Absolute	

				Initial									Single-	Stress-		Effective	Absolute
		Bottomhole		Pressure	Initial	Net		Avg. Eff.	Avg. Eff.	Avg. Water	Reservoir		Value	Dependent	Fracture	Fracture	Fracture
Case	Heterogeneity	Temperature	Depth	Gradient	Pressure	Thickness	No. of	Porosity	Perm.	Saturation	kv/kh	ky/kx	Layer	Reservoir	kv/kh	Half-Length	Permeabil:
No.	Investigated	(deg F)	(ft)	(psi/ft)	(psia)	(ft)	Layers	(frac.)	(md)	(frac.)	(frac.)	(frac.)	Properties	Properties	(frac.)	(ft)	(md)
1 (Base)	Layering	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	1.	200.	100.
2.	Layering	400.	18 000.	0.9	16200.	200.	1.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	1.	200.	100.
з.	Layering	400.	18 000.	0.9	16200.	200.	8.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	1.	200.	100.
4.	Layering	400.	18 000.	0.9	16200.	200.	16.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	1.	200.	100.
5.	Reservoir kv/kh	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.01	1.	Yes	No	1.	200.	100.
6.	Reservoir kv/kh	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.1	1.	Yes	No	1.	200.	100.
7.	Reservoir kv/kh	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	1.	1.	Yes	No	1.	200.	100.
8.	Reservoir ky/kx	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	0.5	Yes	No	1.	200.	100.
9.	Reservoir ky/kx	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	0.1	Yes	No	1.	200.	100.
10.	Reservoir ky/kx	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	2.	Yes	No	1.	200.	100.
11.	Reservoir ky/kx	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	10.	Yes	No	1.	200.	100.
12.	Stress-Dep Res Prop	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	Yes	1.	200.	100.
13.	Stress-Dep Res Prop	400.	18 000.	0.9	16200.	200.	1.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	Yes	1.	200.	100.
14.	Stress-Dep Res Prop	400.	18 000.	0.9	16200.	200.	8.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	Yes	1.	200.	100.
15.	Stress-Dep Res Prop	400.	18 000.	0.9	16200.	200.	16.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	Yes	1.	200.	100.
16.	Areal Heterogeneity	400.	18 000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	No	No	1.	200.	100.
17.	Areal Heterogeneity	400.	18 000.	0.9	16200.	200.	1.	0.0660768	0.00901666	0.364134	0.001	1.	No	No	1.	200.	100.
18.	Areal Heterogeneity	400.	18 000.	0.9	16200.	200.	8.	0.0660768	0.00901666	0.364134	0.001	1.	No	No	1.	200.	100.
19.	Areal Heterogeneity	400.	18 000.	0.9	16200.	200.	16.	0.0660768	0.00901666	0.364134	0.001	1.	No	No	1.	200.	100.

1					Initial									Single-	Stress-		Effective	Absolute	Absolute
Well	1		Bottomhole		Pressure	Initial	Net		Avg. Eff.	Avg. Eff.	Avg. Water	Reservoir		Value	Dependent	Fracture	Fracture	Fracture	Fracture
Spa	cing (OGIP	Temperature	Depth	Gradient	Pressure	Thickness	No. of	Porosity	Perm.	Saturation	kv/kh	ky/kx	Layer	Reservoir	kv/kh	Half-Length	Permeability	Conductiv
(ac:	res)	(MMscf)	(deg F)	(ft)	(psi/ft)	(psia)	(ft)	Layers	(frac.)	(md)	(frac.)	(frac.)	(frac.)	Properties	Properties	(frac.)	(ft)	(md)	(md_ft)
80.		11506.	400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	1.	200.	100.	50.
40.		5753.	400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	1.	200.	100.	50.
160		23012.	400.	18000.	0.9	16200.	200.	4.	0.0660768	0.00901666	0.364134	0.001	1.	Yes	No	1.	200.	100.	50.

Base Case-Stretched-Exponential Model (based on 5-yr production history)

Base Case – Arps Model (based on 5-yr production history) – Just as good a fit

Comparison: 50- Year Forecasts Based on 5-Year Production History

Forecasting Ability of SEDM Model Much Better

Years of	Best Fit,	Arps: Error	SEDM:		
History	Arps "b"	in	Error in		
Matched		Remaining	Remaining		
		Reserves,	Reserves,		
		%	%		
2	2.66	145	36.1		
5	1.91	104	23.9		
10	1.51	30.6	6.73		
25	1.20	7.9	0.21		
50	1.14	0	0		

Long-Duration Linear Flow Model

- Reasonable expectation in formation with hydraulic fracture(s) in communication with wellbore
 - Characterized by slope = -(1/2) on log $q \log t$ plot, b = 2 in Arps model
 - Linear flow possibly followed by boundarydominated flow, 0 < b < 0.5 in Arps model, when boundaries of Stimulated Reservoir Volume (SRV) felt
 - Linear flow may then reappear as flow from beyond SRV develops

Linear Flow, Boundary-Dominated Flow Observed in Denton County Well Group (234 Wells)

Upper Bound of EUR for Denton County Well Group: Immediate Resumption of Linear Flow

Lower Bound of EUR for Denton County Well Group: Well Declines Exponentially for Remaining Life

Duong Method (SPE 137748, June 2011 SPEREE)

For linear or bilinear flow, $q = q_1 t^{-n}$

• Cumulative production, $G_p = \frac{q_1 t^{1-n}}{(1-n)}$

• Ratio
$$\frac{q}{G_p} = \frac{(1-n)}{t}$$

Real life $\frac{q}{G_p} = at^{-m}$... which models observed behavior remarkably well

Duong Method Applied to Shale Well

Barnett Shale – Denton County

Barnett Shale – Denton County

No. of months	No. of wells	30 Yr EUR (BSCF)	BSCF/Well	b value
54	237	319.463	1.348	b=2,0.5
54	237	428.165	1.807	b=2 (EOP)
54	237	408.459	1.723	b=1.54
54	237	388.521	1.639	Duong (a = 1.06, m= 1.17)
54	237	397.583	1.678	Terminal Decline @5%
54	237	346.763	1.463	SEPD

Barnett Shale: Wise (42-497-35766)

Critique of Duong Method

- Easily applied to forecast future production and reserves for low-permeability wells
- Reliable method when less than two years history available to match
- Appears to be reliable for both horizontal and vertical wells, but validation for shales not possible without long-term performance data for comparison
- Method currently unproved for wells with transitions from linear (or bilinear) flow to boundary dominated flow

Conclusions

- Forecasting in resource plays uncertain
 - Understanding of basic physics incomplete
 - Ability to rigorously model hypothesized controls on production limited by incomplete data, difficulty in validating models due to limited duration well histories

Conclusions

- Arps production decline model inappropriate without empirical modifications
 - Example: Minimum terminal (exponential) decline
- Other models arguably more appropriate for resource play evaluations – but more complete validation desirable
 - Valkó (SEDM)
 - Long-duration linear flow
 - o Duong

Recent Decline Models for Resource Plays

John Lee University of Houston 1 February 2012