Status of SPEE Monograph 4— Estimating Developed Reserves in Unconventional Reservoirs

### John Seidle MHA Petroleum Consultants

Denver SPEE Chapter Luncheon 8 January 2014



## **SPEE Monograph 4 -- Committee Members**

Jim Erdle (CMG)

**Creties Jenkins (Rose & Associates)** 

John Lee (SPEE, Univ of Houston)

Casey O'Shea (IHS/Fekete)

John Ritter (SPEE, Occidental Petroleum)

John Seidle (SPEE, MHA Petroleum Consultants)

Darla-Jean Weatherford (TextRight, technical editor)

Scott Wilson (SPEE, Ryder Scott)

## **SPEE Monograph 4 -- Outline**

- **1.** Definition of Unconventional Reservoirs (UCR)
- 2. Reservoir Characterization Aspects of Estimating Developed Reserves in UCR's
- **3.** Drilling , Completions, and Operational Aspects of Estimating Developed Reserves in UCR's
- 4. Classical Arps' Decline Curve Analysis (DCA)
- 5. Fluid Flow Theory & Alternative Decline Curve Methods
- 6. Analytical Models
- 7. Modern Performance Analysis
- 8. Discretized Models
- 9. Probabilistic Methods and Uncertainty in Forecasts and Estimated Ultimate Recovery
- **10.** Summary of Current Technology and Expected Future Trends

## **SPEE Monograph 4 -- Timeline**

- 1 Dec Revised chapter drafts to editors
- 1 Jan 2014 Manuscript draft to authors
- 1 Feb Revised manuscript to SPEE Executive Committee & RDC
- 1 Apr Comments back from SPEE Ex Comm & RDC
- 1 May? 1 Jun? Manuscript released to sister societies
- Release + 2 mons Comments back from sister societies
- Release + 4 mons Respond to sister societies, final to SPEE Ex Comm
- Monograph in print 4Q 2014?

## US unconventional oil production forecast to be a major source for next 30+ years



## US unconventional gas forecast to be increasing fraction of domestic production over next 30 yrs

Figure 91. Natural gas production by source, 1990-2040 (trillion cubic feet)



US Natural Gas Production by Source, EIA Annual Energy Outlook 2013

### SPEE Monograph 4 – Concerned with 3 unconventional reservoirs

1.Shales

2.Tight sands and carbonates

3.Coals

## Permeabilities of unconventional reservoirs



**Ref: Schlumberger "Oilfield Review"** 

#### **Geology is important – Haynesville deposition**



Ref: Martin & Ewing, 2009

## **Geology is important – Eagle Ford geochem**



**Ref: US EIA** 

#### Workflow 1a – Validate data – Bakken well



#### Workflow 1b – Validate data – DJ Niobrara well



#### Workflow 2a – DJ Niobrara well - construct diagnostic plot(s)



### **Workflow 2b – Diagnostic plot variables**

Normalized rate = qo/(pi – pwf)

Material balance time = Np/qo

#### Workflow 2c – DJ Niobrara well - identify flow regimes



## Workflow 3 – Fit data to selected models

Hyperbolic



Duong



#### **Stretched Exponential**



Weibull



Ref: Mishra, 2012, SPE 161092

#### Workflow 4a – Forecasts with selected models



1.0E+08

5.0E+07 0.0E+00

0

60

120

Figure 27 Example 2, comparison of 30-year forecasts for q



Figure 28 Example 2, comparison of 30-year forecasts for Gp

180

Time (months)

Ref: Mishra, 2012, SPE 161092

-Hyperbolic fit SEDM fit

240

300

360

## Workflow 4b – Forecast summary

| model   | 30 yr EUR,<br>mmcf |
|---------|--------------------|
| Arps    | 407                |
| SEDM    | 346                |
| Duong   | 392                |
| Weibull | 315                |

| level | 30 yr EUR,<br>mmcf |
|-------|--------------------|
| P90   | 324                |
| P50   | 369                |
| P10   | 403                |

#### Workflow 5a – Eagle Ford well - Simulation grid



Ref: Erdle, SPEE mono 4

#### Workflow 5b – Model history matches



Ref: Erdle, SPEE mono 4

### **Workflow 5c – Simulation forecasts**



Ref: Erdle, SPEE mono 4

#### Workflow 5d – Eagle Ford well - Simulated EUR's

| Run # | HM Error (%) | Oil EUR (stb) | Gas EUR (MMscf) |
|-------|--------------|---------------|-----------------|
| 286   | 1.865        | 651,310       | 915             |
| 252   | 1.9974       | 653,342       | 917             |
| 290   | 2.0028       | 649,340       | 909             |
| 295   | 2.596        | 648,504       | 900             |
| 278   | 2.5966       | 646,719       | 967             |
| 284   | 2.6838       | 646,419       | 966             |
| 438   | 2.7735       | 649,306       | 902             |
| 285   | 3.0777       | 648,042       | 975             |
| 153   | 3.0389       | 574,492       | 870             |
| 131   | 3.3639       | 705,861       | 941             |
| 254   | 3.4003       | 724,059       | 981             |
| 251   | 3.4224       | 718,745       | 967             |
| 166   | 4.0191       | 571,847       | 859             |
| 372   | 5.1966       | 631,359       | 851             |
| 373   | 5.7327       | 692,528       | 976             |

- Oil EUR's, stb
- P90 597,239
- P50 649,306
- P10 713,591
  - <u>Gas EUR's, mmcf</u> P90 - 863 P50 - 917 P10 - 976

### Interesting but...

## What do we do when we have to evaluate 800 wells in a week?

#### Real life 1 – Bakken data



🔺 data

#### Real life 2 – Bakken data & decline curve

![](_page_25_Figure_1.jpeg)

#### Real life 3 – Bakken 50 yr forecast EUR = 1,117 mmbo

![](_page_26_Figure_1.jpeg)

-→-f'cast

🔺 data

#### Real life 4 – Bakken 50 yr forecast w/ 8% min decline EUR = 740 mbo

![](_page_27_Figure_1.jpeg)

## What do you do when you have to evaluate 800 wells in a week?

- 1. Decline curve analysis with minimum decline?
- 2. DCA w/ min decline + add'l analysis of high value wells?
- 3. Other?

## **SPEE Monograph 4 – Summary 1**

- UCR's important US oil and gas source for next 30+ yrs
- Geology is important UCR control
- UCR developed reserves workflow—Ideal case
  - 1. Assess data quality
  - 2. Construct diagnostic plots
  - 3. Fit simple models
  - 4. Forecast simple models
  - 5. Simulation

## **SPEE Monograph 4 – Summary 2**

- UCR developed reserves workflow—Common case
  - 1. DCA with minimum decline
- Monograph 4 in print 4Q 2014?

Thank you!

# Monograph 4 committee is interested in your comments--

jseidle@mhausa.com

303-277-0270