Highlights from SPEE Monograph 4: Estimating Ultimate Recovery of Developed Wells in Low Permeability Reservoirs

John Lee Texas A&M University

Purpose of Monograph

- To provide an understanding of the methods used to analyze well performance
- To describe these methods in the context of
 - Consistent workflows
 - Estimating recoverable hydrocarbon volumes
 - Quantifying uncertainties
- Acknowledges that methods are constantly evolving and new approaches will be applied in the future
- Stops short of addressing the assignment of developed reserves

Monograph Committee

- □ John Seidle , MHA Pet. Consult.—Chair & Tech. Editor
- Jim Erdle , Computer Modeling Group
- Brent Hale, Cobb & Associates
- Olivier Houzé, Kappa Engineering
- Dilhan Ilk, DeGolyer & MacNaughton
- Creties Jenkins, Rose & Associates
- John Lee, Texas A&M University
- John Ritter, Occidental Petroleum
- Scott Wilson, Ryder Scott Company

Darla-Jean Weatherford, TextRight—Production Editor

Thanks to Gary Gonzenbach, Dee Patterson, and members of the SPEE Board for their guidance

Monograph Chapters

- 1. Introduction
- 2. Understanding Tight Reservoirs
- 3. Reservoir Characterization
- 4. Drilling, Completions, and Operations
- 5. Conventional DCA in Unconventional Wells
- 6. Fluid Flow and Alternative Decline Models
- 7. Model Based Well Performance Analysis & Forecasting
- 8. Application of Numerical Models
- 9. Quantifying Uncertainty
- **10.** Example Problems

Chapter 2: Understanding Tight Reservoirs

- What the Monograph covers:
 - Light tight oil/shale oil
 - Shale/tight gas
 - Coalbed methane (CBM)/coalseam gas
 - Basin-centered gas
- What the Monograph excludes:
 - Oil sands (bitumen)
 - Gas hydrates
 - Oil shale (kerogen)

Characteristics of Tight Reservoirs

- □ Low K (<0.1 md)
- Continuous, regional hydrocarbon system
- Lack hydrodynamic influence
- May exist in conventional traps
- Discrete "fields" may merge into a regional accumulation
- Commonly abnormally pressured
- Evident production "sweet spots" or "fairways"
- Self-sourcing or in close proximity to source rocks

- Requires stimulation
- Repeatable statistical distribution of EURs
- Produces little water (except for some CBM and tight oil)
- Truly dry holes uncommon
- EURs generally lower than many conventional EURs
- Potential large-scale development footprint
- Extensive transient flow period
- Large in-place, low rec factor
- Potential interference due to spacing or induced fracturing

Data Considerations and Workflow

SOCIETY OF PETROLEUM EVALUATION ENGINEERS

Chapter 3: Reservoir Characterization

- Low permeability reservoirs are often referred to as "statistical" plays which implies some degree of irreducible uncertainty
- While this randomness does exist, there are also underlying rock and fluid property trends that control productivity and reserves
- This chapter focuses on charactering these trends and their impact on well performance

Reservoir Properties Controlling Performance

- Regional geology
- Structural geology
- Stratigraphy
- Lithofacies types
- Depositional system
- Diagenesis
- Organic geochemistry

- Hydrogeology
- Natural fractures
- Geomechanical props.
- Rock properties
- Log properties
- Seismic scale props.
- Fluid properties

For each of these, there is a discussion of its relevance, an illustration emphasizing its importance, and a list of deliverables that should result from the associated technical work

Rock Properties Example

- Pore system characterization: Pore types, sizes, connectivity
- Porosity, permeability, saturations
- Issues & calibration (e.g., pressure cores)

Reservoir Characterization: Key Points

- All forecasting techniques rely to some degree on reservoir characterization
 - Even for empirical methods (Arps) it is still important to understand the size and characteristics of the geobodies being drained, especially before BDF
 - Model-based analysis (RTA) assumes certain geologic conditions (such as homogeneity, constant thickness, regular fracture spacing) that need to be validated
 - Numerical simulation requires an extensive set of geoscience data to build a representative model
- As such, it is critical to incorporate reservoir characterization aspects

Chapter 4: Drilling, Completions, Operations

- Previously unimaginable production rates and ultimate recoveries have been obtained using very long wells and multi-stage fracture stimulations
- But to be commercially successful, these need to be coupled with cost-effective practices
 - Efficient logistics
 - Economies of scale
 - Service industry engagement
- This chapter reviews these aspects and their impact

Discussion Topics

Drilling

Drilling techniques, stages

Heel

- Drilling fluids, bits, muds
- Drilling problems
- Wellbore integrity
- Vertical vs. horiz. wells
- Orientation, landing zone
- Cost reduction with time

Operations

- Choke mgmt, artificial lift
- Water source and disposal
- Fluid entry diagnostics
- Producing rates and pressures
- Wellpads, modular facilities

Completions

Dual Packer

Open vs. cased hole

Port

- Under-reaming, cavitation
- Cluster and stage spacing
- Plug & perf vs ball & sleeve
- Fluids, proppants, additives
- Slickwater, gel, hybrid fracs
- Microseismic, frac geometry
- Rock interaction, flowback
- Fracture diagnostics

Drilling, Completions, Operations: Key Points

- Decisions about how to drill, complete, and operate wells strongly affects productivity
- Practices that lead to better results include
 - Consistently accurate geosteering
 - Ensuring wellbore integrity
 - Minimizing interference and undrained regions
 - Properly managing drawdown
 - Optimizing artificial lift and compression
 - Achieving long-term wellbore stability
 - Conducting successful well interventions
 - Minimizing wellbore loss (corrosion, collapse, etc.)

SOCIETY OF PETROLEUM EVALUATION ENGINEER

14

Chapter 5: Conventional DCA in Unconv. Wells

- Purpose is to discuss the validity of applying the Arps equation to low permeability reservoirs
- Arps documented pre-existing empirical decline curve forms in 1944
 - Data quality was very bad--Arps "smoothed" monthly data to 2 points per year!
 - But well quality was very good--High rate, high quality, single layer reservoirs with low decline rates
 - Characterized by low hyperbolic "b" factors

Application of Arps in Unconv. Wells

- Long wells with multi-staged fracs are different
 - Steep early decline, shallow late decline, multiple flow regimes
- □ Arps forms are very flexible w/multiple segments
 - Need to honor all the data
 - High b values (1-2+) match early transient data
 - Lower b values (0-1) match later-life flow regimes
 - Most problems = user error
- So...the Arps equation, modified for use in different flow regimes, is a reasonable technique for forecasting wells

Multi-segment (Modified Hyperbolic) Declines

Conventional DCA: Key Points

- Arps DCA can do a good job on unconventional wells... when used correctly
- Multiple segments are critical, with at least a trailing exponential to recognize late-life effects
- Important to plot secondary phases & pressures
 - Provide meaningful supplemental data which add depth and nuance to a primary phase forecast
 - Is your well loading-up? Was it frac-bashed? How are the GOR and WOR changing?
- RTA and numerical simulation complement Arps empirical forecasts

Chapter 6: Fluid Flow & Alternative Decline Models

- Purpose is to analyze some of the more promising decline models as alternatives to Arps
- Begins with fluid flow theory to help us understand if proposed models are applicable
 - Linear flow, bilinear flow, BDF, depth of investigation
- Discusses alternative models that handle longduration transient flow data
 - Stretched exponential, Duong
- Workflow used in decline curve analysis is more important than the specific model selected

Flow Regime Identification is Critical

Top: Log-log rate vs time plot

Bottom: Log-log rate vs. MBT (Np/q)

NVENT

FUELED BY SPE • AAPG • SEG

Workflow for Forecasting

When BHP data are available and time permits, normalize rates before analysis

•
$$\left(\frac{q}{p_i - p_{wf}}\right)$$
 or $q_{corr} = q_{obs}\left(\frac{p_i - p_{wf,stab}}{p_i - p_{wf,obs}}\right)$

- Exclude first 6-12 mos (clean-up, choked flow)
 - Plot water rate vs. time to identify fracture cleanup
 - Don't use data during cleanup—won't fall on longer term trend since skin is continuously decreasing

Determine flow regimes in available data

Minimum: log q vs. log t

Better: add log $\left(\frac{q}{p_i - p_{wf}}\right)$ vs. log MBT $\left(\frac{G_p}{q}, \frac{N_p}{q}\right)$

Workflow for Forecasting (Cont'd)

- Estimate time to BDF if not observed in data
 - Minimum: switch time from analogy
 - Better: depth of investigation or analytical model

Don't try to fit all history with single model

- Fit each flow regime with model appropriate for that flow regime
- Extrapolate rate to well life or economic limit only with *final* flow regime observed or expected
 - Earlier flow regimes are important for understanding, but unimportant for extrapolation

Chapter 7: Model-based Analysis

This chapter presents the application of production diagnostics & model-based analysis to evaluate performance & forecast production

□ We are still moving up the learning curve

- Flow phenomena in low-permeability reservoirs is not completely known nor fully represented
- Analysis and forecasting methods are based on conventional processes, with a few adaptations
- Little empirical knowledge of long-term decline exists for multi-stage, fracture-stimulated laterals

Data Requirements

- Production data
 - Time-rate-pressure at least on a daily basis
- Static reservoir properties
 - Porosity, thickness, water saturation, initial reservoir pressure and temperature
- PVT properties
 - Laboratory report preferred
- Well completion data
 - Number of stages and perf clusters, fluid entry data, artificial lift

Model-Based Analysis: Key Points

- A large number of models (from simple to complex) exist for representing production
 - But models are only as good as the reservoir and completion data used to construct them
- Several factors should be considered in the context of model-based analysis & forecasting:
 - Non-uniqueness (various solutions may honor data)
 - Factors affecting flow behavior (PVT, stressdependence, drainage area patterns, etc.)
 - Diagnostics (flow regimes, data quality)
 - Ranges of model parameters to quantify the uncertainty of forecasts

Chapter 8: Application of Numerical Models

- To understand physics-based EURs, optimization
 - Multi-phase (below bubble/dew pt) & non-darcy flow
 - Multi-component phase behavior, adsorption, diffusion
 - Heterogeneous rock properties and completions
 - Changing reservoir/completion parameters with time
- **To accommodate current development practices**
 - Analysis of flowback rates, drawdown mgmt. strategy
 - Analysis/forecasting of well pads showing interference
 - Interpreting production surveillance data
 - Modelling of re-fracs and infill drilling

History Matching & Probabilistic Forecasts

- History matching is an inverse problem with non-unique solutions
- Perfect history match ≠ perfect prediction

- Probabilistic forecasting helps reduce risk in decision-making
- Provides range of possible outcomes

Numerical Modeling: Key Points

- Essential tool when simpler methods fail the "physics test"
- Practical tool when combined with productivity enhancement tools (PETs)
- Requires properly constructed grids to capture transient flow behavior between stages/wells
- Chapter provides several application examples:
 - Calculating EURs regardless of whether drainageboundary-dominated behavior is observed
 - Optimizing the number and size of propped fractures for a single well
 - Optimizing well spacing

Chapter 9: Quantifying Uncertainty

- Chapter focuses on uncertainties encountered in forecasting and how to address them
- There are multiple methods to express, quantify, and reduce forecast uncertainty
 - For single wells
 - For multiwell groups

The best way to reduce forecast uncertainty is to make small improvements to those steps that are most often applied.

However, minimizing uncertainty will not eliminate uncertainty

Example of Forecast Uncertainty Reduction w/Time

SOCIETY OF PETROLEUM EVALUATION ENGINEERS

Quantifying Uncertainty: Key Points

- Focus efforts on variables that have the most impact and eliminate data outliers
- Use P10/P90 ratios, probit plots, trumpet charts, and stat. type wells to quantify data uncertainty
- Use multiple plots to display data, understand trends, identify flow regimes, and check models
- Use a group-level forecast to validate well-level forecasts where wells are in communication
- Note when sample size is too small or coefficients of determination are too low to be meaningful

Chapter 10: Example Problems

- Methods presented in Monograph 4 are applied to three real data sets
 - Bakken oil, Eagle Ford condensate, Marcellus gas
- A similar approach is used for each
 - Assessment of data quality
 - Construction of diagnostic plots
 - Use of simple models requiring only rate data
 - Performance data analysis using rate/pressure data
 - Numerical simulation
- Purpose is to provide example workflows that readers can modify and apply to their wells

Linkage with Estimates of Developed Reserves

- Rate-time (DCA) analysis is accepted by company management and industry regulators when used with good engineering judgment
- DCA should be validated with diagnostics
- Overbooking of reserves still occurs due to the lack of understanding of flow regimes
- For a proper analysis, it is critical to utilize both rate and pressure data
- We should focus on building representative analytical and numerical models to provide insights and direction

Further Assistance...

- SPEE will be holding Monograph 4 training sessions in the near future— two are now scheduled:
 - 4 October, Denver, John Seidle
 - 14 November, Houston, John Lee
- Check the SPEE website periodically for more information and other offerings later

Highlight from PLE Actor Estimating Ultimate Decivery **Developed Wells in Low Permeability** Reservoirs John Lee Texas A&M University

SOCIETY OF PETROLEUM EVALUATION ENGINEERS

Committee Contact Information

- John Seidle: jseidle@mhausa.com
- Jim Erdle: jim.erdle@cmgl.ca
- Brent Hale: bhale@wmcobb.com
- Olivier Houzé: oh@kappaeng.com
- Dilhan Ilk: dilk@demac.com
- Creties Jenkins: cretiesjenkins@roseassoc.com
- John Lee: john-lee@tamu.edu
- John Ritter: john_ritter@oxy.com
- Scott Wilson: scott_wilson@ryderscott.com

