Society of Petroleum Evaluation Engineers Rocky Mountain Chapter April 18, 2017

Using The Rectangle Method to Evaluate Drainage For Horizontal Wells

Bonnie Percy, P.E

Square Pegs and Round Holes

Geometrical Considerations

Relating Drainage Patterns to The Public Land Survey System

ARE YOU TH

Rectangles - area and perimeter (metric)

Grade 5 Geometry Worksheet

Find the perimeter and area of each rectangle.

Area = Base X Height

Area of a Circle

Area = Pi \mathbb{R}^2

BLM Manual:

Ah = [OOIP x FVF]/[(7,758 bbls/ac-ft) x Net Pay x Porosity x (1-Sw)*RF]

Where,

 $A_h = Area drained by horizontal well (acres)$

OOIP = Original oil-in-place in area drained by the well (stbo)

FVF = Formation Volume Factor (reservoir barrels/stock-tank barrels)

Net Pay = Average net pay thickness (feet)

Porosity = Average reservoir porosity (fraction)

Sw = Water saturation (fraction)

RF = Recovery Factor

The radius of drainage "Rd" of a horizontal well in an <u>isotropic</u> reservoir is calculated by the following formula:

$$R_{d} = [-2 \times L + \sqrt{[(2 \times L)^{2} - (4 \times \pi \times (-A_{h} \times 43,560))]]/[2 \times \pi]}$$

Where,

Rd = Radius of horizontal well drainage (feet)

L = Length of the open horizontal wellbore in reservoir (feet)

 $\pi = Pi (3.14159)$

Ah = Area of horizontal well drainage (acres)

$$R = (-2L + \sqrt{(2L)^{2} - (4\pi (-A + 435LO))})$$

$$Z\pi T$$

$$2\pi R = -2L + \sqrt{(2L)^{2} + 4\pi A(435LO)}$$

$$2\pi R + 2L = \sqrt{(2L)^{2} + 4\pi A(435LO)}$$

$$(2\pi R + 2L)^{2} = \sqrt{(2L)^{2} + 4\pi A(435LO)}$$

$$(2\pi R + 2L)^{2} = \sqrt{(2L)^{2} + 4\pi A(435LO)}$$

$$(2\chi^{2}(\pi R + L)^{2} = (ZL)^{2} + \chi^{2}\pi A(435LO)$$

$$(\chi^{2}(\pi R + L)^{2} = L^{2} + \pi A(435LO)$$

$$(\pi R)^{2} + 2\pi RL + \chi^{2} - \chi^{2} = \pi A(435LO)$$

$$(\pi R)^{2} + 2\pi RL + \chi^{2} - \chi^{2} = \pi A(435LO)$$

$$\pi^{2} R^{2} + 2\pi RL = \pi A(435LO)$$

$$\pi R^{2} + 2RL = A(435LO)$$

Thus the BLM manual is using a Joshi Method 1

4000' Lateral with 6 stages of 100' $X_{\rm f}$ transverse Fractures

Joshi Method 1 (Area = Pi $R^2 + 2^*R^*L$)

Where R is the radius of a vertical well with a circular drainage area

A good approximation for longitudinal hydraulic fractures or for wells with a large drainage area and short transverse hydraulic fractures (isotropic conditions)

Assuming that each end of the horizontal well is represented by a vertical well that drains an area of a half circle with a radius of b, Joshi (1991) proposed the following two methods for calculating the drainage area of a horizontal well.

Method I Ovoid

Joshi proposed that the drainage area is represented by two half circles of radius b (equivalent to a radius of a vertical well r_{ev}) at each end and a rectangle, of dimensions L(2b), in the center. The drainage area of the horizontal well is given then by:

$$A = \frac{L(2b) + \pi b^2}{43,650}$$
 Note typo – should be "43560" (7-45)

where A = drainage area, acres

L = length of the horizontal well, ft

b = half minor axis of an ellipse, ft

Method II Ellipse

Joshi assumed that the horizontal well drainage area is an ellipse and given by:

$$A = \frac{\pi ab}{43,560}$$
(7-46)

Ref: Reservoir Engineering Handbook, Tarek Ahmed

Rectangle Model

Smaller drainage areas, increased number of stages and longer transverse hydraulic fractures result in a more rectangular drainage area.

4000' Lateral with 14 stages of 500' X_f transverse Fracs

Reasons for Using Rectangle Method

- 1. Precedent for Geometric Model in the Regulatory History
- 2. Mathematics that could be easily constructed or checked
- 3. Better representation of Heel-Toe drainage patterns

3D Numerical Simulation

Microseismic imaging, such as this one of a four-well pad in the Eagle Ford, show that the stimulated rock goes far beyond the propped fractures near the wellbore. Source: Paper SPE 174946.

Samson Resources Company WOGCC Docket No. 127-2014 **Exhibit E-2**

37-73B

0

20

40

60

Samson Resources Company WOGCC Docket No. 127-2014

Rectangle Model – Approximates Late Time Drainage Patterns

Rectangle Model -Dimensions

R – Drainage Radius of a vertical well (unstimulated - without hydraulic fractures)

L – Lateral length

 X_f – Hydraulic Fracture half length

Area = 4 (1/4 Pi R²) + 2*(R*L) +2*(R*2X_f) + (2X_f*L) = Pi R² + 2*[(R*L) + (R*2X_f) + (X_f*L)] Solving for R: R=(A/Pi-2* X_f*L/Pi+((L+2* X_f)/Pi)^2)^0.5-(L+2* X_f)/Pi

Approximate Area = $(L+2R) * (2X_f + 2R)$ Solving for R: R= $(((A/4)-(L*X_f/2)+((X_f/2+L/4)^2))^{0.5})-X_f/2-L/4$

Gene R. George & Associates, Inc.

Well

Depth (FT - TVD) Por - Porosity (%)

H - Net Pay (FT)

Drainage Geometry Comparison

Rectangle Method - Variables

```
Area = Pi R<sup>2</sup> + 2^{((R*L) + (R*2X_f) + (X_f*L))}
Approximate Area = (L+2R)^{*}(2X_f+2R)
```

Pi - 3.14

- L Lateral
- Toe Perf MD minus Heel Perf MD
- Toe Perf MD minus Heel Perf MD plus Frac Stage
- Sliding Sleeves Toe Packer MD minus Heel Packer MD
- Any "out-of-zone" lateral corrections?

R – Unstimulated Radius

- Unstimulated vertical wells
- Stimulated vertical wells
- Reservoir simulation

Xf – Fracture Half-Length

- Chemical Tracers
- Microseismic
- 2D Frac Models (Post-Frac and History Matched !!!)
- Reservoir Simulation

A – Area

• Volumetrics or Simulation

Frack Hits

Frame 1 of a modeling sequence shows a hydraulic fracture may contact a depleted reservoir section of multiple parent wells—inducing a frac hit across the pad. A larger fracture network develops around the child well only after the fracturing fluids have filled that depleted area, shown in frames 2 and 3. *Source: Barree & Associates*

Ref: Oil and Gas Producers Find Frac Hits in Shale Wells a Major Challenge , Trent Jacobs, JPT Digital Editor | 01 April 2017

Unstimulated Radius from Stimulated Vertical Wells

Analysis of Hornbuckle Sussex vertical and horizontal well drainage areas indicates a ratio of horizontal to vertical Drainage Radius (Rh / Rv) = 407 / 1150 = 0.35

WOGCC Docket No. 208-2012 and 212-2012 Exhibit E-1 Samson Resources Application for 640-Acre Drilling and Spacing Unit and Increased Density Section 36, T43N, R76W, Campbell County, Wyoming

Sussex Well Drainage Area - Analogy to Hornbuckle and Spearhead Ranch

					Lateral (from	Fracture Half			
	Estimated Ultimate	PHI-H**		Drainage Area	Slotted Liner MDs)	Length X _f	Drainage Radius		
Well	Oil (BO)	(feet)	Во	(Acres)	(Feet)	(feet)	(feet)		Comment
Vertical - 43 well field average	139,000	2.48	1.2	95	6 7 5	-	1150	r,	Circular drainage area
Horizontal - 20 well normalization	304,773	2.53	1.2	204	4087	-70	825	r h (Joshi)	Joshi Method
Horizontal - 20 well normalization	304,773	2.53	1.2	204	4087	500	407	r _{h (Rectangle)}	Rectangle Method
Horizontal - 20 well normalization	304,773	2.53	1.2	209	4200	500	407	r _{h (Rectangle)}	Rectangle Method Adjusted to 4200' Lateral

Ratio of horizontal to vertical Drainage Radius (r_{h} / r_{v}) = 407 / 1150 = 0.35

Reservoir constant properties for Drainage Area Calculation Area = (EUR* Bo)/(7758*H*phi*(1-Sw)*RF)

40% Sw - Water Saturation (Samson petrophysical model with mineral corrections)15.0% RF - Recovery Factor

AN ENGINEER

An Engineer Is a Person Who Passes as an exacting expert on the basis of being able to turn prolific fortitude infinite strings of out with incomprehensible formulas calculated with micromatic precision from vague assumptions which are based on debatable figures taken from inconclusive experiments carried out with instruments of problematical accuracy by persons of questionable mentality for the avowed purpose of annoying and confusing a hopelessly chimerical group of esoteric fanatics referred to altogether too frequently as technicians.

- unknown

Time

Injection Rate BPM

Reservoir Simulation

Rate Transient Analysis

Coal Bed Methane

Gene R. George & Associates, Inc.

Tight Gas Sands

Pressure Data Analysis For Infill Evaluation

