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1. SPEE Monograph 4 — What’s in it?



SPEE Monograph 4 —
Estimating Developed Reserves in
Unconventional Reservoirs

Assess current methods to forecast performance
of wells in unconventional reservoirs given
different reservoir types, different completions,

and different well maturities.
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SPEE Monograph 4 -- Chapters

Introduction
Definition of unconventional reservoirs (UCR)

Reservoir Characterization Aspects of Estimating Developed Reserves in UCR’s

- A

Drilling , Completions, and Operational Aspects of Estimating Developed
Reserves in UCR’s

Classical Arp’s Decline Curve Analysis (DCA)
Fluid Flow Theory & Alternative Decline Curve Methods
Model-Based Well Performance Analysis and Forecasting

Discretized Models

© o N o O

Probabilistic Methods and Uncertainty in Forecasts and Estimated Ultimate
Recovery

10. Example Problems



Workflow for Evaluation of Developed
Reserves in Unconventional Reservoirs

From Dr. John Lee, SPEE Monograph 4

1. Assess data viability and correlation

2. Construct diagnostic plots

3. ldentify flow regimes

4. Analyze and forecast with selected simple models

5. Analyze and forecast with semi-analytical models (RTA)
6. History match with simulator and forecast

7. Reconcile forecasts and estimated ultimate recoveries (EUR’s)



Monograph 4 diagnostic plots to identify
flow regimes

1. Pressure normalized rate
2. Flowing material balance

3. Square root of time



Diagnostic plot 1 — pressure normalized rate —
identify flow regimes
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Diagnostic plot 2 — flowing material balance -

estimate OOIP
Pressure normalized rate
qo/(pi — pwf)
VS q/Ap

Normalized cumulative




Diagnostic plot 3 — square root of time plot -
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Monograph 4 models

. Modified Arps

. Duong

. Stretched exponential decline
. Fetkovich

. Blasingame

. Agarwal-Gardner



Monograph 4 models — 2

®* Many models require bottomhole flowing pressures
®* Many models require rock and fluid properties

®* None have multi-fractured horizontal well option



Monograph 4 models -3

®* What if | only have public domain rate data?
* We'll look at three models

1. Modified Arps

2.Duong

3. Stretched exponential decline



Model 1 — Modified Arps —
start with classic Arps equations

of
(1+bD;t)"

U, =

N, (t) ) g

_D(b 1)

Rate equation can have long tail and erroneously high recovery



Model 1 — Modified Arps —
impose terminal exponential decline, Dmin,
on classic Arps equations

tSW
bD

0o = U exp[— Dmin (t o tsw )]

qsw o qel
N —
PR Dsw

Four empirical constants — qi, Di, b, and Dmin



Model 2 — Duong

Qo = qlt(a/ m)

Yo
N

p
Three empirical constants —a, m, and g1

—at™"

Ref: Duong, SPE 137748



Model 3 — Stretched exponential decline —
SEDM

Three empirical constants — qi, n, and t

Ref: Yu, SPE 166198



2. Two applications of Mono 4 to Wyoming wells



Application # 1 -
Mono 4 model predictions
VS
actual performance



Spillman Draw 16-1H API 4900928224
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Spillman Draw 16-1H -
test of 3 models

* Take first half of production data
®* Analyze with three models
1. Modified Arps
2. Duong
3. Stretched exponential decline

®* Compare model predictions with second half of production data



oil, water, bpd - gas, mcfd

Spillman Draw 16-1H - production data
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gas-oil ratio, scf/stb

2,500

Spillman Draw 16-1H -
gas-oil ratio & water-oil ratio
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qo/(pi-pwf), bpd/psia
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Spillman Draw 16-1H -
diagnostic plot #1
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Spillman Draw 16-1H -
modified Arps
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oil, bpd - cum oil, mstb

Spillman Draw 16-1H -
Duong
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Spillman Draw 16-1H -
SEDM
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Spillman Draw 16-1H -
models vs actual - rates
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Spillman Draw 16-1H -
models vs actual - cums
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Spillman Draw 16-1H -
models vs actual — short term cums
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Wyoming well # 1 conclusions

* All models acceptable for 1 yr forecast

« No model accurately predicts long term recovery



Application # 2 —
What can Mono 4 diagnostic plots tell
us about frac interference?
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Do diagnostic plots show frac hits?
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oil, water, bpd - gas, mcfd

Thunderbolt 1-2H production data
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Thunderbolt 1-2H frac hits at 1157 & 1797 days
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Thunderbolt 1-2H GOR & WOR plots
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qo/(pi-pwf), bpd/psia
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qo/(pi-pwf), bpd/psia
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qo/(pi-pwf), bpd/psia

100,000

10,000

1,000

100

10

Henry 16-11-2H diagnostic plot

) \
~ o L
giat B - \
L
[ &
[ S
. '7\'
301 days - \
end of
. \
linear flow
889 days -
start of BDF
10 100 1,000 10,000

B data

material balance time, days

unit slope — = half slope

100,000

41



Observations

Thunderbolt 1-2H diagnostic plot became noisy when

offset wells fracked.

Fed 16-11H diagnostic plot shows frac hit coincides +/-

with end of linear flow

Henry 14-11-2H diagnostic plot early time behavior not

affected after hitting offsets during stimulation



3. A new model that isn’t discussed in
Monograph 4



Compound Linear Flow Model considers
flow from native reservoir into the SRV

by by
XX
b4y
XX
b4y
XX
b4y
XX
by
K

Ty
X
by
XX
by
X
Ly
XX
by
K

Compound linear flow

Ref: Liang, 2012, SPE 162646

SRV = Stimulated Reservoir Volume

Primary linear flow

rrr 1

rt*trTr*t 1
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Compound Linear Flow equations

0.00633kt
thf — 2
PuUC, X
o Khlp—py )
> 141.20B_u,

Primary linear flow

pD = \ 7Zthf

Compound linear flow

2X .
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X

e

Ref: Liang, SPE 162646



Two Important times for
Compound Linear Flow

Time to end of primary linear flow

. _ 18964y d;
- k

t = time, hours Time to start of compound linear flow

316¢Lc,x;
I =
k

t = time, days

Ref: Liang, SPE 162646



Will a well reach compound linear flow or
boundary dominated flow?

For a well to reach compound linear flow

Ye > 2427 =5.01 ye = interwell spacing, feet
f

X

Assume ye = 1,000 ft and xf = 200 feet
Then ye/xf =5
Well will probably transition from primary

linear flow to BDF, unlikely that CL flow
will be observed

Ref: Liang, SPE 162646



Spillman 16-1H analyzed with CL model
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CL analysis of Spillman 16-1H assumed

* Oil =42 API

®* GOR =750 scf/stb

® Initial reservoir pressure = 6500 psia

®* Bottomhole flowing pressure = 3000 psia
® Net pay =100 ft

® Porosity = 10%

Better estimates of rock, fluid, and wellbore properties required to

refine analysis and predict future performance



Summary & Conclusions

SPEE Monograph 4 focuses on predicting performance of
developed wells in unconventional reservoirs
Diagnostic plot constructed and three models applied to first
half of Spillman 16-1H production data
Comparison of model forecasts with second half of Spillman
data indicates

® All models acceptable for one year reserves cycle

® No model accurately predicts long term recovery



Summary & Conclusions — 2

Frac hits introduced noise in diagnostic plot but did not change
signature.

Diagnostic plot of offending well showed no evidence of hit on
offset wells.

Compound linear (CL) model developed for multi-fractured
horizontal wells.

CL model requires rock and fluid properties and wellbore

completion info.



Thank you!

jseidle@mhausa.com
Office = 303-277-0270
Cell = 303-949-3467
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Permeabilities of Unconventional Reservoirs
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half Spillman 16-1 square root of time plot
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Modified Arps details

e Select a minimum terminal decline, Dmin

« Forecast follows hyperbolic decline until decline

rate falls to the specified minimum

* Forecast follows exponential decline using
specified minimum decline rate for remainder of

well life



qo/Np, day-1
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Half Spillman 16-1H
Duong - t(a,m) v t plot
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qo, bpd

Half Spillman 16-1H
Duong - go v t(a,m) plot
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In(qi/q)

Half Spillman 16-1H
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