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1. SPEE Monograph 4 – What’s in it? 

1.4 



SPEE Monograph 4 – 
Estimating Developed Reserves in 

Unconventional Reservoirs 

Assess current methods to forecast performance 

of wells in unconventional reservoirs given 

different reservoir types, different completions, 

and different well maturities. 
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SPEE Monograph 4 -- Chapters 

1. Introduction 

2. Definition of unconventional reservoirs (UCR) 

3. Reservoir Characterization Aspects of Estimating Developed Reserves in UCR’s 

4. Drilling , Completions, and Operational Aspects of Estimating Developed 

Reserves in UCR’s 

5. Classical Arp’s Decline Curve Analysis (DCA) 

6. Fluid Flow Theory & Alternative Decline Curve Methods 

7. Model-Based Well Performance Analysis and Forecasting 

8. Discretized Models 

9. Probabilistic Methods and Uncertainty in Forecasts and Estimated Ultimate 

Recovery 

10. Example Problems 
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Workflow for Evaluation of Developed 
Reserves in Unconventional Reservoirs 

From Dr. John Lee, SPEE Monograph 4 

1. Assess data viability and correlation 

2. Construct diagnostic plots 

3. Identify flow regimes 

4. Analyze and forecast with selected simple models 

5. Analyze and forecast with semi-analytical models (RTA) 

6. History match with simulator and forecast  

7. Reconcile forecasts and estimated ultimate recoveries (EUR’s) 
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Monograph 4 diagnostic plots to identify 
flow regimes 

1. Pressure normalized rate 

2. Flowing material balance 

3. Square root of time 
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Diagnostic plot 1 – pressure normalized rate – 
identify flow regimes 

Pressure normalized rate 

qo/(pi – pwf) 

vs 

Material balance time, MBT 

Np/qo 
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Diagnostic plot 2 – flowing material balance – 
estimate OOIP 

Pressure normalized rate 

qo/(pi – pwf) 

vs 

Normalized cumulative 
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Diagnostic plot 3 – square root of time plot –
estimate A-root-k 

Rate normalized pressure 

(pi – pwf)/qo 

vs 

Square root of time 
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Monograph 4  models 

1. Modified Arps 

2. Duong 

3. Stretched exponential decline 

4. Fetkovich 

5. Blasingame 

6. Agarwal-Gardner 
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Monograph 4  models – 2 

• Many models require bottomhole flowing pressures 

• Many models require rock and fluid properties 

• None have multi-fractured horizontal well option 
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Monograph 4  models – 3 

• What if I only have public domain rate data? 

• We’ll look at three models 

1.Modified Arps 

2.Duong 

3.Stretched exponential decline 
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Model 1 – Modified Arps – 
start with classic Arps equations 

Rate equation can have long tail and erroneously high recovery 
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Model 1 – Modified Arps – 
impose terminal exponential decline, Dmin, 

 on classic Arps equations 
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Model 2 – Duong 
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Model 3 – Stretched exponential decline – 
SEDM 
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Three empirical constants – qi, n, and τ 
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2. Two applications of Mono 4 to Wyoming wells 

1.20 



Application # 1 – 
Mono 4 model predictions  

vs  
actual performance 
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Spillman Draw 16-1H   API 4900928224 
T35n R73W sec 16 
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Spillman Draw 16-1H – 
test of 3 models 
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• Take first half of production data 

• Analyze with three models 

1. Modified Arps 

2. Duong 

3. Stretched exponential decline 

• Compare model predictions with second half of production data 



Spillman Draw 16-1H – production data 
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Spillman Draw 16-1H –  
gas-oil ratio & water-oil ratio 
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Spillman Draw 16-1H –  
diagnostic plot #1 
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Spillman Draw 16-1H –  
modified Arps 
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Spillman Draw 16-1H –  
Duong 
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Spillman Draw 16-1H –  
SEDM 

29 

qi = 438 bpd 

n = 0.491 

τ = 189 days 

1

10

100

1,000

10,000

100,000

0 200 400 600 800 1,000 1,200 1,400

q
o

, b
p

d
 -

 N
p

, m
st

b
 

time, days 
oil cum oil oil calc'd calc'd cum



Spillman Draw 16-1H –  
models vs actual - rates 
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Spillman Draw 16-1H –  
models vs actual - cums 
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Spillman Draw 16-1H –  
models vs actual – short term cums 
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Wyoming well # 1 conclusions 

• All models acceptable for 1 yr forecast 

• No model accurately predicts long term recovery 
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Application # 2 – 
What can Mono 4 diagnostic plots tell 

 us about frac interference? 
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Do diagnostic plots show frac hits? 
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Thunderbolt 1-2H Sep 08 

Henry 14-11-2H  Aug 13 

Federal 16-10/3FH Nov 11 



Thunderbolt 1-2H production data 
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Thunderbolt 1-2H frac hits at 1157 & 1797 days 
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Thunderbolt 1-2H GOR & WOR plots 
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Thunderbolt diagnostic plot 

1.39 
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Fed 16-10/3FH diagnostic plot 
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Henry 16-11-2H diagnostic plot 
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Observations 

1.42 

• Thunderbolt 1-2H diagnostic plot became noisy when 

offset wells fracked. 

• Fed 16-11H diagnostic plot shows frac hit coincides +/- 

with end of linear flow 

• Henry 14-11-2H diagnostic plot early time behavior not 

affected after hitting offsets during stimulation 



3. A new model that isn’t discussed in  

Monograph 4 

1.43 



Compound Linear Flow Model considers 

flow from native reservoir into the SRV 

Primary linear flow 

Compound linear flow 

Ref: Liang, 2012, SPE 162646 

SRV = Stimulated Reservoir Volume 

44 



Compound Linear Flow type curves 

Ref: Liang, SPE 162646 
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Compound Linear Flow equations 

Ref: Liang, SPE 162646 

Compound linear flow 

Primary linear flow 
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Two important times for  

Compound Linear Flow 

Ref: Liang, SPE 162646 

Time to end of primary linear flow 

t = time, hours 
Time to start of compound linear flow 

t = time, days 
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Will a well reach compound linear flow or 

boundary dominated flow? 

Ref: Liang, SPE 162646 

For a well to reach compound linear flow 

ye = interwell spacing, feet 

Assume ye = 1,000 ft and xf = 200 feet 

 

Then ye/xf = 5 

 

Well will probably transition from primary 

linear flow to BDF, unlikely that CL flow 

will be observed 
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Spillman 16-1H analyzed with CL model 
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CL analysis of Spillman 16-1H assumed 

• Oil = 42 API 

• GOR = 750 scf/stb 

• Initial reservoir pressure = 6500 psia 

• Bottomhole flowing pressure = 3000 psia 

• Net pay = 100 ft 

• Porosity = 10% 

Better estimates of rock, fluid, and wellbore properties required to 

refine analysis and predict future performance 
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Summary & Conclusions 

• SPEE Monograph 4 focuses on predicting performance of 

developed wells in unconventional reservoirs 

• Diagnostic plot constructed and three models applied to first 

half of Spillman 16-1H production data 

• Comparison of model forecasts with second half of Spillman 

data indicates 

• All models acceptable for one year reserves cycle 

• No model accurately predicts long term recovery 



Summary & Conclusions – 2 

• Frac hits introduced noise in diagnostic plot but did not change 

signature. 

• Diagnostic plot of offending well showed no evidence of hit on 

offset wells. 

• Compound linear (CL) model developed for multi-fractured 

horizontal wells. 

• CL model requires rock and fluid properties and wellbore 

completion info. 



Thank you! 
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Modified Arps details 

• Select a minimum terminal decline, Dmin 

• Forecast follows hyperbolic decline until decline 

rate falls to the specified minimum 

• Forecast follows exponential decline using 

specified minimum decline rate for remainder of 

well life 
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Half Spillman 16-1H  

SEDM n & τ plot 
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