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INTRODUCTION
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INTRODUCTION

» Is this:
» a) expected behavior?
» b) new and impactful to our ability to hit guidance?

» Second, if it is expected, have we properly planned
forit?

Production Forecasting
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TECHNICAL SUMMARY

During infinite-acting linear flow and constant flowing pressure
conditions, GOR is constant for a constant flowing pressure

When the infinite-acting period ends, we observe two things:

1) Change from -1/2 slope to negative unit slope or steeper on log-log
rate-time plot

2) GOR no longer constant but begins to increase

These two together, we have a narrative of “bubble point
death”

Reality is that operation practices or lack of artificial lift more
likely explanation for any “well death” after end of infinite-
acting period or at bubble point pressure



LITERATURE REVIEW

SPE-178665-PA (Clarkson and Qanbari 2015)

When the infinite-acting period ends, we observe two things:

1) Change from -1/2 slope to negative unit slope or steeper on log-log
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LITERATURE REVIEW

From solution of PDE for infinite-acting case:

q — A k(pcti
Di—Dwf uot

1

Combine time & space into similarity variable:

X

C=

So, instead of

GOR = f(x,t) ~  GOR=f (%)



SPE-180932-PA (Tabatabaie and Pooladi-Darvish 2016)

LITERATURE REVIEW
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Fig. 9—Comparison of the performance of saturated (p;= pp, =50000 kPa, R,;= 219 m¥m?®) and undersaturated (p;= 75000 kPa,
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SPE-180932-PA (Tabatabaie and Pooladi-Darvish 2016)

LITERATURE REVIEW
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SPE-180932-PA (Tabatabaie and Pooladi-Darvish 2016)

LITERATURE REVIEW

KyqloB
GOR = R, + —29%°7° ayaluated at sandface
krolgBg

If p = constant
- B, &S, - k., & u, > GOR = constant

Implications:

“The production GOR is controlled by pressure and saturation at
the sand face, not the average properties within the region of
depletion.

The saturation/pressure relationship, and hence, the production
GOR, is independent of absolute permeability.”

“Recombination of fluid samples collected at the surface in the

ratio of producing GOR does not represent the in-situ reservoir
fluid”



SPE-184397-PA (Jones 2017)

LITERATURE REVIEW

Early-time change in GOR due to
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LITERATURE REVIEW
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SPE-175137-MS (Khoshghadam et al 2015)

LITERATURE REVIEW

Additionally, bubble point is suppressed in nanopores
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Figure 6—Confined and unconfined phase envelope




LITERATURE REVIEW

SPE-175137-MS (Khoshghadam et al 2015)

» Flow regimes dictate secondary phase yield trends
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MODEL APPROXIMATION

Tri-Diagnostic Plot

1

Transient Hyperbolic Model (THM) —

N z « Excellent approximation of Linear Flow
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SPE-175137-MS (Khoshghadam et al 2015)

PRIMARY PHASE (OIL) FORECASTING

Multi-Segment (Transient) Hyperbolic and Analytic solution on
left

Fulford and Blasingame 2013, SPEE Monograph 4
Compositional Simulation w/ nanophase behavior on right
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BAKKEN WELL (SPE-133719-STU)

» 1t Segment: b = 2
» 2"d Segment: Rate shift; b = 2
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BAKKEN WELL (SPE-133719-STU)

Diagnostic plots only valid for specific flow regimes

If exponential, Cartesian Rate vs. Cum

Rate vs. MIBT follows same sequence
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BAKKEN WELL (SPE-133719-STU)

If it happens suddenly... it is not a reservoir effect.
Louis Matter, IHS Fekete
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Well Test Interpretation, Course, Louis Mattar

AN ASIDE

The kangaroo in different coordinates
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SECONDARY PHASE (GOR) FORECASTING

Log GOR vs Log Time

Rate
Well Count

——Avgerage GOR ——ARIES Approximation ——Bounded Power Function =----- Well Cqunt

Infinite-acting  Boundary-influenced Use
Linear Flow Flow Maximum

Limit for
Reasonable Certainty

Literature sparse on
empirical GOR forecasting...
fit the “form” from data

y = bt™
Simple Power-Law function

works well for GOR or CGR
yield forecasts

Couple to primary phase
forecast by infinite-acting
constant yield (y;r) and
diagnosed end of linear flow
(telf)

bgor = Yirteir "GOR



SECONDARY PHASE (GOR) FORECASTING

» All have similar slope, vertical shift is due to intercept

Log Yield vs Cartesian Time Log Yield vs Cartesian Time Log Yield vs Cartesian Time
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SECONDARY PHASE (GOR) FORECASTING

Some considerations...
Wells in communication will establish similar GORs

Frac hits may change trend

2-parameter (Power-Law) model provides simplicity
and ease-of-use for noisy production data

Most wells fall within reasonable range of parameter

values

Observed value in data shown —
Meop: 0.610 0.9



WORKFLOW

1) Forecast Oil phase, identify time to end of linear

flow (¢,f)

2) Specify slope (m ;) and GOR plateau (y, ) during
linear flow period from analog(s)

3) Calculate intercept (b )

boor = Yirteis " GOR

4) Forecast GOR
GOR —_ bGORtmGOR

bGOR

Gas (Mscft/D) and Oil (STB/D) Rate

Fluid-Production Rates
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DISCUSSION
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CONCLUSIONS

GOR in tight oil can be approximated with a constant
value during linear flow (for constant p,,¢)

Primary phase flow regimes follow clear sequence
even with more-complex physics (compaction,
single/dual k, bubble point suppression) included in
models

GOR trends impacted by more-complex physics, but
“trend” correlated with primary phase flow regimes

GOR increase may occur over years, but evidence is against
“bubble point death” as a common phenomenon in tight oil

Power-law slope (m ) is a useful diagnostic, may be
determined from analog(s) to forecast GOR trend
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DIAGNOSTICS

Flow Rate proportional to square-root of time during
infinite-acting flow
1 1

1
qX—=7= — = 1
vt 1+2D;t (1+D;bt)b

logg = —%logt

Flow Rate trend change in field data

steeper slope
b -~ 08 —1.0



STATE-OF-THE-ART MODELS
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STATE-OF-THE-ART MODELS
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MODEL APPROXIMATION

Empirical Approx.

Transient Hyperbolic Model (THM) —

N z « Excellent approximation of Linear Flow
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MODEL APPROXIMATION
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SPE-175137-MS (Khoshghadam et al 2015)

COMPOSITIONAL SIMULATION GRID
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