

Elizabeth DeStephens, P.E.

VP Reserves & Corporate Development

California Resources Corporation

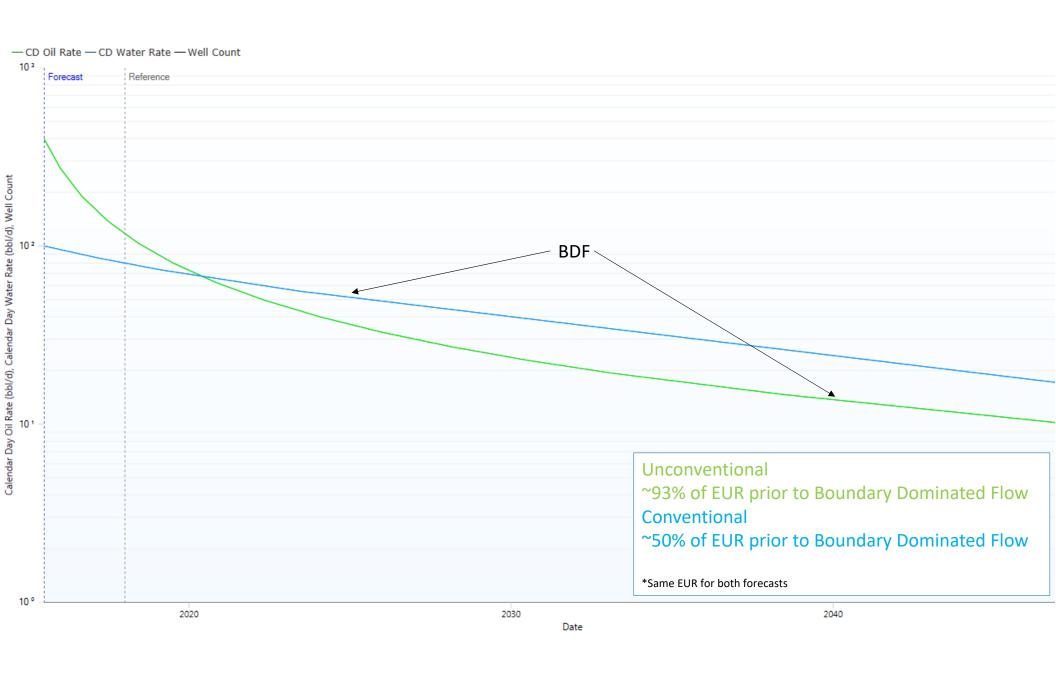
WHO...?

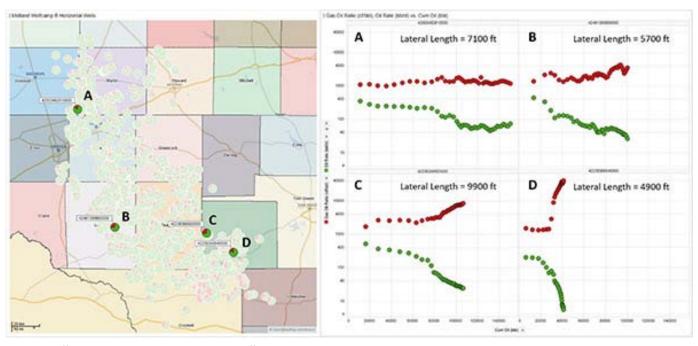
"Who's on first?"

WHO...

• ...is the seller?

• ...performed the data room evaluation and terminal decline estimation?


WHAT...?

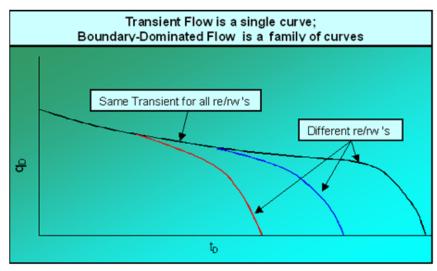

"What's your damage?"

WHAT...

- ...are we potentially buying?
- ...type of reservoir(s) and drive mechanism?
- ...is the product mix now and expected over the life of the project?
- ...what's its damage?

Product Mix in Midland Basin

From "Death by Bubble Point", Dr. John Lee, SPE HEES 2018


WHERE...?

"Where we're going, we don't need roads."

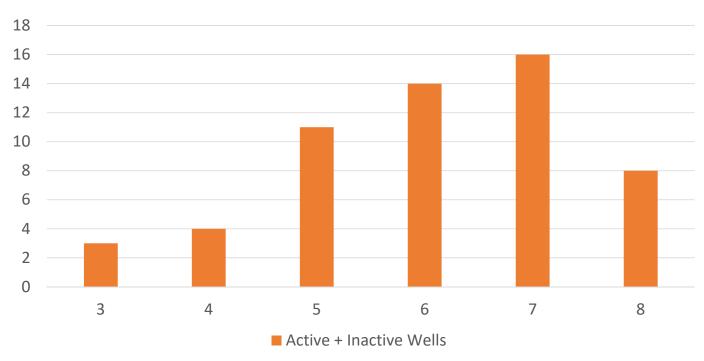
WHERE...

 ...are the future development and re-development opportunities located with respect to the existing wells and do we anticipate interference, i.e. infills, step outs?

www.fekete.com

WHY...?

"Atreyu, why do you look so sad?"

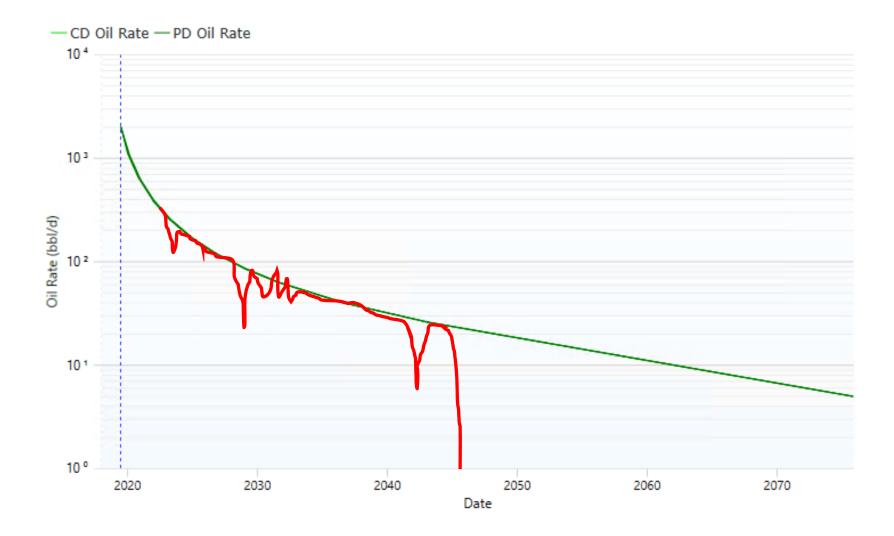

WHY...

 ...should we include/exclude certain wells when estimating terminal decline?

 ...should/could we use vertical wellbores as a proxy for horizontal terminal decline estimation?

...have existing wells become inactive in the past?

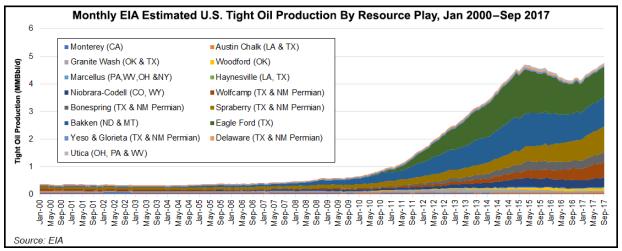
Estimated Terminal Decline


HOW...?

"How far is Minas Tirith??"

HOW...

- ...did previous operators drill & complete these wells?
- ...are the wells being produced now and likely to be produced in the future?
- ...much opex/capex are associated with achieving the terminal decline expectations?


WHEN...?

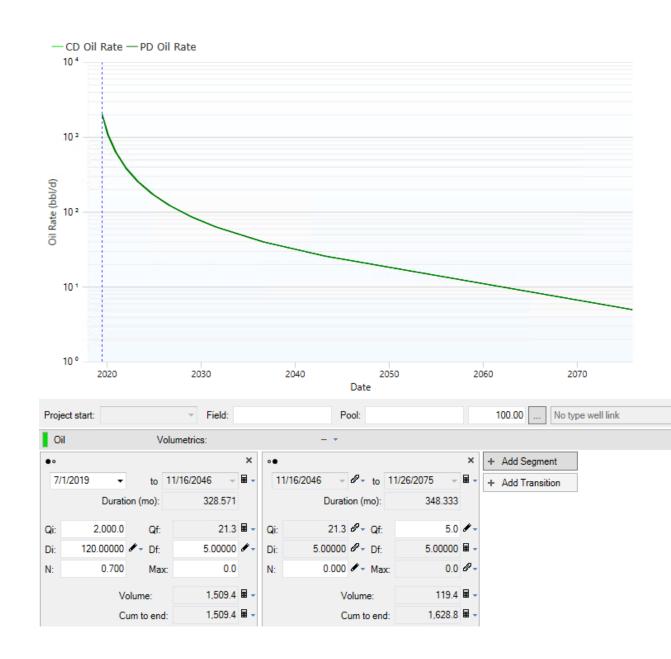
"When and where does this 'real world' occur?"

WHEN...

- ...in the field's life cycle are we purchasing?
- ...will we produce the forecasted volumes and incur the costs?

www.naturalgasintel.com

Hypothetical Unconventional Oil Opportunity

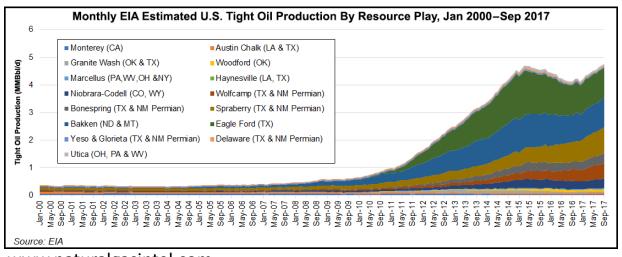

Project Rock Chalk

Key Stats

- 100% WI / 75% NRI
- 2000 bopd IP
- 120% nominal decline
- 0.7 b factor
- \$7.5MM development capex
- \$7500/well-mo fixed opex
- \$10/bo variable opex

Sensitivities

- Terminal Decline
- WO capex
- Maturity


Terminal Decline Sensitivities

Terminal Decline	Reserves MBOE	NPV10 M\$
5%	1,206	22,445
7%	1,175	22,422
10%	1,133	22,335
14%	1,082	22,119
Difference 14% to 5%	-10%	-1%

Maintenance Capex Sensitivities

WO Capex	Reserves MBOE	NPV10 M\$
None (Base)	1,133	22,335
\$150M / 4 years	1,127	22,020
\$150M / 2 years	1,113	21,767
\$300M / 2 years	1,093	21,228
Difference Max to Base	-4%	-5%

Maturity of Project at Acquisition Date

www.naturalgasintel.com

Maturity of Project at Acquisition Date

	5% Termin	al Decline	10% Termir	nal Decline	Difference	10% to 5%
Years from Initial Development	Reserves MBOE	NPV10 M\$	Reserves MBOE	NPV10 M\$	Reserves MBOE	NPV10 M\$
None (Base)	1,206	22,445	1,133	22,335	-6%	0%
2.5 Years	620	12,299	548	12,152	-12%	-1%
5.5 Years	410	6,881	337	6,686	-18%	-3%
10.5 Years	255	3,599	183	3,285	-28%	-9%


Potential Implications of Terminal Decline Estimation Bust in A&D

- Over/under bid for acquisition
- Opex/capex KPI target misses
- Production volume/mix misses
- Reserves write downs and asset impairments
- DD&A implications

Conclusions

- Terminal decline is a larger driver in A&D evaluations when:
 - Reservoir achieves BDF sooner (i.e. conventional)
 - Reservoir is further along in its maturity
 - Interference from down spacing observed
 - Higher costs required to achieve the theoretically feasible terminal decline

DISCUSSION?

BACKUP

BOOK VALUE AND DD&A

- Book value of PP&E represents (historical) costs incurred to acquire or develop assets, including successful exploration costs, ARO and capitalized interest, net of accumulated DD&A and impairment (pp. 68-69, 100)
- DD&A is based on historical costs going back many years, so will reflect necessary investment required to sustain reserves based on mixture of present and potentially very historic costs – poor benchmark for changes in real asset value
- DD&A using unit of production method
- Proved reserves and production volumes used as basis for recording DD&A

BOOK VALUE AND DD&A (Continued)

• $\frac{Unamortized\ Costs}{Proved\ Reserves}$ $x\ Production\ for\ Period$

DD&A COMPUTATION

<u>Illustration 1</u>				
Unamortized Costs	\$750,000			
Estimated Reserves – beginning of period	1,000,000 bbls			
Production during period	40,000 bbls			

$$\frac{\$750,000}{1,000,000 \ bbls} \times 40,000 \ bbls = \$30,000$$

DD&A COMPUTATION

Illustration 2 (significant reserves revision)				
Unamortized Costs	\$750,000			
Estimated reserves – beginning of period	\$1,000,000 bbls			
Production during period	40,000 bbls			
Estimated reserves – end of period	560,000 bbls			

$$\frac{\$750,000}{560,000 \ bbls + 40,000 \ bbls} x \ 40,000 \ bbls = \$50,000$$