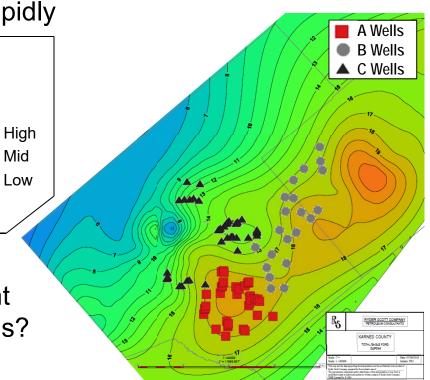


1

Analytics in Unconventional Plays

Joshua J. A. Firestone Ryder Scott Company

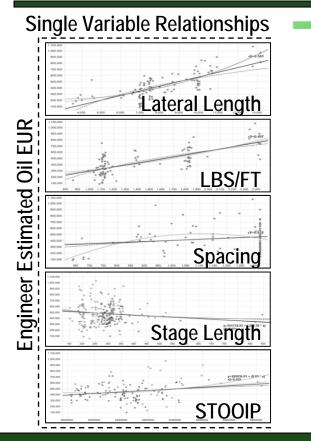
What You Are Thinking Lateral Lenoth Gravity' You should use an analytic multivariate approach to ntration maximize value! Acres Pressure 3

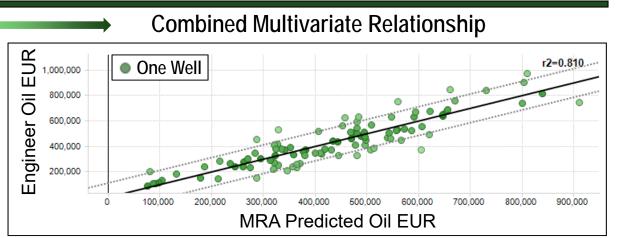

RYDER SCOTT

The Challenge

• Completion designs are changing rapidly

	Α	B	C
Geology	Best	Good	OK
Lateral Length	5,000	7,500	9,500
Proppant LBS/FT	2,000	1,500	2,500
Stage Length	300	280	200
Well Spacing	262	625	525
Reserves BBL/LatF	T 61	72	60


 Considering all factors, can an operator create a better development plan to maximize value of future wells?

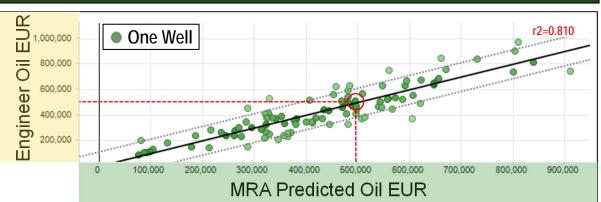


Methodologies

Neural Linear Regression: **Networks** Meaningful insights Learning Capacity ٠ Easy to interpret ٠ Random Very accessible • Forests Decision Trees Regression 000 Interpretability

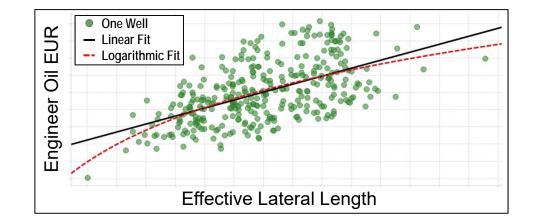
What is Multivariate Regression Analysis

Statistical Analysis Aids Understanding:


- Significance of geologic variables
- Impacts of individual variables
- Impacts of ever changing completion designs
- Value improvement insights

What is Multivariate Regression Analysis

R² is the amount of variation in the dependent variable explained by the independent variables

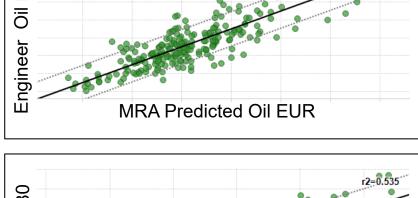

Multivariate Regression Analysis generates an equation

Va	riable List	MRA Weights	5	Well Values	MR	A Equation
•	Intercept	- 200,000			=	- 200,000
•	Lateral Length	56	Х	7,000	=	392,000
•	Proppant LBS/FT	120	Х	1,200	=	144,000
•	Well Spacing	300	Х	500	=	150,000
•	Stage Length	- 400	Х	350	=	- 140,000
•	STOOIP (MMBLS)	8,000	Х	19	=	152,000
					Σ	498,000

Relationship Considerations

- Each continuous variable is described by a line or curve
- A linear relationships implies that each incremental lateral foot will bring about an equal change in reserves or production
- Other relationships, such as a logarithmic fit, imply a diminishing return in reserves or production for each addition foot drilled

Engineers and Geologists need to work with the statistician


 Engineering and geology principles are applied and need to be continuously considered

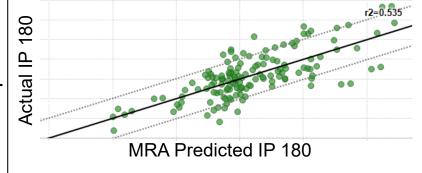
Variable Importance and Time

- Variable importance changes depending on the period of time or area under study
- Early time: Completion variables are more impactful
- EUR: Geologic/spacing variables are more impactful

EUR Variable List

- Effective Lateral Length
- Proppant LBS/FT
- Proppant Concentration
- Stage Length
- STOOIP
- Well Spacing

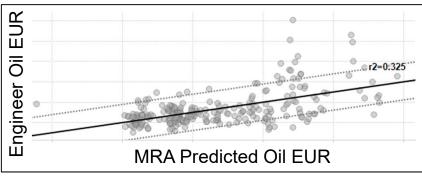
EUR

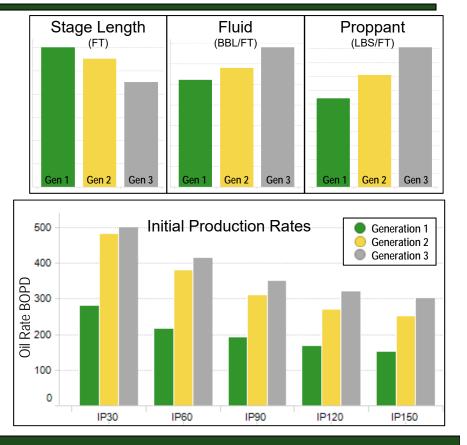

IP 180

Day

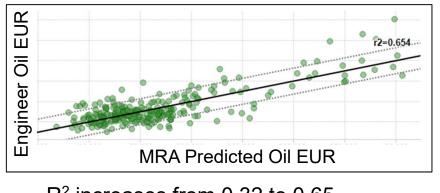
Variable

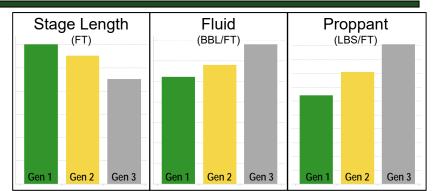
List


One Well



Key Variable Impact


- With completion designs changing, how should reserves volumes be estimated?
- Are these variables actually causing a change in reserves?
- Are there additional variables that should be considered?



Key Variable Impact

- With completion designs changing, how should reserves volumes be estimated?
- Are these variables actually causing a change in reserves?
- Are there additional variables that should be considered?

R² increases from 0.32 to 0.65

Lateral Length

Well Location

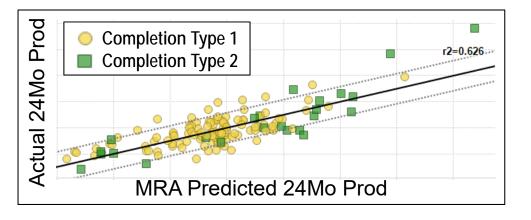
Well Spacing Fluid (BBL/FT)

Stage Length

GOR

***** Proppant (LBS/FT)

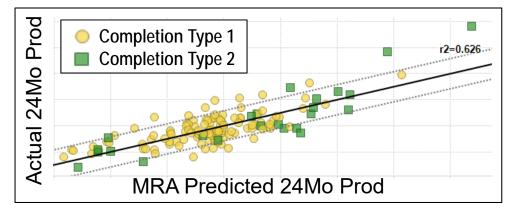
 \star


Relative Variable Importance

Determination of Categorical Differences

 Is there a difference in completion type performance? Completion Type 2 wells produce

35,000 additional bbls in the first two years of production


Variable List

- Effective Lateral Length
- Proppant LBS/FT
- Stage Length
- Well Spacing
- Fluid Properties
- Completion Type
- Geology

Determination of Categorical Differences

• Is there a difference in completion type performance?

Completion Type 2 wells produce 35,000 additional bbls in the first two years of production

- What other categorical differences could be tested?
 - Reservoirs
 Do they act similarly to completions when limited geology is available?
 - Operators Do they achieve similar results?

Benchmarking

Determine if an operator with overlapping acreage is performing better or worse than other operators when taking into account relevant differences

lip						
Ē		4 F	Predicted O	il EU	R	
riable List	MRA Weights		Well Values	5 N	/RA	Equation
Intercept	- 200,000				=	- 200,000
Lateral Length	56	Х	7,000		=	392,000
Proppant LBS/FT	120	Х	1,200		=	144,000
Well Spacing	300	Х	500		=	150,000
Infill Drilling Factor	- 400	Х	350		=	- 140,000
STOOIP	8,000	Х	19		=	152,000
Operator <u>A</u> /B	50,000	Х	0		=	0

EUR

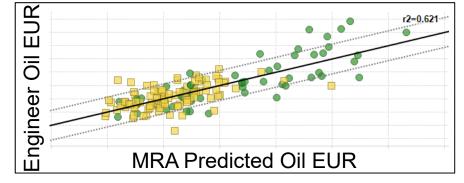
Ö

eer

Variable List

٠

r2=0.621


Benchmarking

Determine if an operator with overlapping acreage is performing better or worse than other operators when taking into account relevant differences

What is different between the operators?	

Variable List

- Intercept
- Lateral Length
- Proppant LBS/FT
- Well Spacing
- Infill Drilling Factor
- STOOIP
- Operator A/<u>B</u>

MRA Weights		Well Values	MRA	Equation
- 200,000			=	- 200,000
56	Х	7,000	=	392,000
120	Х	1,200	=	144,000
300	Х	500	=	150,000
- 400	Х	350	=	- 140,000
8,000	Х	19	=	152,000
50,000	Х	1	=	50,000
			Σ	548,000

Estimating Variable Impact

Va	ariable List	MRA Weight	S	Well Values	MR	A Equation	Sensitivity
•	Intercept	- 200,000			=	- 200,000	
•	Lateral Length	56	Х	7,000	=	392,000	7.9 %
•	Proppant LBS/FT	120	Х	1,200	=	144,000	2.9 %
•	Well Spacing	300	Х	500	=	150,000	3.0 %
•	Stage Length	- 400	Х	350	=	- 140,000	-2.8 %
•	STOOIP (MMBLS)	8,000	Х	19	=	152,000	
					Σ	498,000	
	Lateral Length	56	х	700	=	39,200	7.9 %

Examine how a 10% change in the Well Value affects the equation results. Sensitivity testing the equation evaluates the impact of each individual variable

Re

Estimating Variable Impact

Passing Results

Variable List	Sensitivity
Intercept	
Lateral Length	7.9 %
Proppant LBS/FT	2.9 %
Well Spacing	3.0 %
Stage Length	-2.8 %
STOOIP (MMBLS)	

Failing Results

Va	riable List	Sensitivity
•	Intercept	
•	Lateral Length	19.4 %
•	Proppant LBS/FT	6.5 %
•	Well Spacing	1.4 %
•	Stage Length	-2.2 %
٠	Fluid BBLS/FT	2.2 %
•	Well Location	

Screen for outsized individual variable impacts

Sensitivity testing the equation evaluates the impact of each individual variable

Rc

Estimating Variable Impact

Passing Results

Variable List	Sensitivity
Intercept	
Lateral Length	7.9 %
Proppant LBS/FT	2.9 %
Well Spacing	3.0 %
Stage Length	-2.8 %
STOOIP (MMBLS)	
(, , , , , , , , , , , , , , , , , , ,	

Screen for outsized individual variable impacts

Failing Results

Va	riable List	Sensitivity
٠	Intercept	
٠	Lateral Length	19.4 %
•	Proppant LBS/FT	6.5 %
٠	Well Spacing	1.4 %
٠	Stage Length	-2.2 %
٠	Fluid BBLS/FT	2.2 %
•	Well Location	

Gain insights into trends of impact variables

Ryder Scott has seen general trends for specific parameters during sensitivity testing

Re

Is This Reliable Technology?

{2008} (25) <u>Reliable technology</u>. Reliable technology is a grouping of one or more technologies (including computational methods) that has been field tested and has been demonstrated to provide reasonably certain results with consistency and repeatability in the formation being evaluated or in an analogous formation.

- Multivariate regression analysis can be considered reliable technology
- Reliability should be demonstrated on a case by case basis
- Sufficient evidence as to what constitutes reliable technology should also be determined on a case by case basis

RYDER SCOTT

Conclusion

- Engineering and geology concepts still apply
- Multivariate analysis aids understanding:
 - Significance of geologic variables
 - To what degree does the well's location impact performance?
 - Impacts of individual variables
 - How much will reserves increase if the average lateral length increases?
 - Will additional completions intensity increase production enough to offset costs?
 - Impacts of ever changing completion design
 - With many design elements changing, what is causing the observed change in performance?
 - Value improvement insights
 - Optimization of completions designs and field development plans