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A Few Definitions

• Data analytics (DA) – sophisticated data collection + analysis 

to help understand hidden patterns and relationships

• Machine learning (ML) – building a model between 

predictors and response (often with a “black-box” algorithm) 

• Artificial intelligence (AI) – applying predictive model with 

new data to make decisions without human intervention
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Mishra et al., 2021, JPT (March), 25-30. 
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Types of Analytics
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Predictive Analytics Process
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Exploratory Data Analysis

• Patterns, trends, outliers, imputation

• Scatter-plot matrix, trellis plots 

Unsupervised Learning

• Data reduction and clustering

• PCA, k-means, hierarchical methods

Supervised Learning

• Regression and classification 

• Random Forest, ANN, kNN
Ma et al., 2018, Symmetry, 10, 734
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Data 
modeling 
culture

• Assume some 
stochastic data 
model, estimate its 
parameters and 
apply model

Algorithm 
modeling 
culture

• Assume model 
form to be 
unknown, and 
generate fitting 
function from data

Reaching 
conclusions 
from data

No phenomenological models available

Statistical Modeling v/s Machine Learning

Breiman, L., Stat. Science, 2001
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Observations on Where Things Stand

• Two tracks (state of practice) on Machine Learning

– Significant self-learning and upskilling from technical staff

– Fear, uncertainty and doubt from decision makers

• Some questions to ponder/discuss

– Why ML models, and when

– Mechanics of data-driven modeling

– Predictive modeling approaches

– ML-based workflow 
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Mishra et al., 2021, JPT (March), 25-30. 
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Why ML Models and When?

• Historically, subsurface science and engineering analyses have 
relied on mechanistic (physics-based) models

• Incorporation of causal input-output relationship

• Experienced professionals are wary of purely data-driven 
“black-box” ML models that lack such understanding  

• Nevertheless, the use of ML models is easy to justify - if

• relevant physics-based model is computation intensive and/or immature

• suitable mechanistic modeling paradigm does not exist
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Rationale for Data-Driven Models

• Mechanistic modeling in unconventional reservoirs complex 

– fluid flow in a network of induced and natural fractures 

– coupled processes such as geomechanical effects, water blocking, non-Darcy 
flow in nano-scale pores, adsorption/desorption etc.

– robust and computationally-efficient physics-based modeling frameworks 
and software tools under continued development  

• Empirical models (e.g., decline curves) popular alternative but have 
many limitations (model form, parameterization)

• Data-driven models are emerging as alternative approach (let the 
“machine” learn about the system from the data)
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Mechanics of Data-Driven Modeling

Variable ImportanceCross-Validation

Feature Selection Multivariate AnalysisExploratory Data Analysis

Model Building
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Model Model Model Model Model

Train

Predict
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Regression & Classification TreeRegression & Classification Tree

Random Forest

Gradient Boosting Machine

Support Vector Machine

Artificial Neural Network

Gaussian Process Emulation

Random Forest

Gradient Boosting Machine

Support Vector Machine

Artificial Neural Network

Gaussian Process (Kriging)

Predictive Modeling Approaches
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Partition parameter space into rectangular
regions with constant values or class labels

Build ensemble of trees using random 
subsets of observations and predictors 

Build sequence of trees that address short-
comings of each previous fitted tree

Find hyperplane maximizing separation of 
data and transform data into linear space

Inputs mapped to outputs via hidden units 
using a sequence of nonlinear functions

Multidimensional interpolation considering
trend and autocorrelation structure of data

X1 < t1

X2 < t2

R1 R2

X2 < t3

R4 R3
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• Framing the problem

• Selecting causal variables

• Checking data quality

• Fitting model(s) and aggregating

• Validating model(s)

• Identifying key variables

• Communicating results

ML-Based Workflow (Analysis, Review)
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Basic linear 
regression

Tree-based 
model 

(GBM, RF)

Non-tree-
based model 
(ANN, SVM)



Exponential Growth in O&G ML Applications
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Case Study [1] – Key Factors Affecting 
Hydraulically Fractured Well Performance

• Wolfcamp Shale 
horizontal wells 

– Data from 476 Wells

– Goal Fit M12CO ~ 
f (12 predictors)

– Multiple machine 
learning methods

– Model validation + 
variable importance

Schuetter, Mishra, Zhong, LaFolette, 2018, SPEJ, SPE-189969-PA
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Field Description

M12CO Cum. production of 1st 12 producing months (BBL)

Opt2 Categorized operator code

COMPYR Well completion year

SurfX, SurfY Geographic location

AZM Azimuth angle

TVDSS True vertical depth (ft)

DA Drift angle

LATLEN Total horizontal lateral length (ft)

STAGE Frac stages

FLUID Total frac fluid amount (gal)

PROP Total proppant amount (lb)

PROPCON Proppant concentration (lb/gal)
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Variable Importance 
Using R2-Loss Metric

Multiple Models
Fitted and Validated
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12-mon Cumulative 
Oil (x1k BBL)

12-mon Cumulative 
Oil (x1k BBL)

12-mon Cumulative 
Oil (x1k BBL)

12-mon Cumulative 
Oil (x1k BBL)
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Classification Tree Analysis to Identify 
Factors Driving Extreme Outcomes

▪ [Q] What separates top 
25% from bottom 25% of 
producing wells in terms 
of well productivity?

▪ Accuracy:
Bottom 

25%
Top 25%

Correct 
ID

Bottom 25% 62 18 78%

Top 25% 7 73 91%

Total 69 91 70%

Top 25%: Not 
too shallow, 
not too deep, 
long lateral 
with more 
proppant, but 
not too long 
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Ensemble Modeling

Model Name
RMSE

(x1k BBL)

M1 37.57

M2 37.45

M3a 36.21

M3b 36.15

LPM 47.12

QPM 40.03

SVR 39.00

RF 38.33

GBM 40.40

M1 — direct averaging; M2 — weighted averaging; 
M3a — stacking with NN; M3b — stacking with RF
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Case Study [2] – Application of Machine 
Learning for Production Forecasting

• Time-series approach 
to forecasting (v/s DCA)

– Training on early-time 
data (~ 3 months); 
forecast for > 2 yrs

– Long short-term memory 
(LSTM) method 

– 300+ wells analyzed in 
hindcasting of strategy

Zhan, Sankaran, LeMoine, Graybill, Mey, 2019, URTeC-47
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LSTM Architecture

20Mishra 2022 SPEE



Key Aspects of Approach

• Purely data-driven –
(tubing pressure, oil 
production from past 3 
days, select nearby wells

• Leverages historical data 
from other wells (similarity 
measure)

• Separate models built for 
rate and cumulative 
production – aggregated 
with data-driven weights

• No static or completion 
parameters (similar to DCA)

21Mishra 2022 SPEE

LSTM

DCA



Model Performance
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Case Study [3] – Generation of Type Wells 
via Cluster Analysis 

• Conventional approach

– Select analogous wells 
(reservoir type, well 
length, completion, age)

– Calculate average 
performance of group

– Use this “type well” for 
long-term forecasting

Khaksarfard, Tabatabaie, Mattar, 2019, URTeC-992
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• Statistical approach

– Create clusters based solely on 
shape of production decline

– Create type well for each of 
the clusters

– For a target well, find cluster 
that is most similar and use its 
type well for forecasting



Clustering and Barnett Dataset

• Clustering with k-means 

– Minimizes average squared distance 
between data points and their 
corresponding cluster centers

• 7000 multi-fraced horizontal wells 
producing gas for 5+ years with non-
anomalous + continuous production

• 80-20 split for training and testing

• Data normalized to peak rate
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Single Area – Single Cluster (SA-SC)
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Multiple Area – Single Cluster (MA-SC)
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Multiple Area – Multiple Clusters (MA-MC)
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Testing with 6 Months Data to 60 Months
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Case Study [4] – History Matching of 
Production Data with ML-Based Proxies

• History match flowing BHP 
data + SRV estimate

– Proxy for dynamic reservoir 
model with ED/RS

– Approximation of SRV using 
time-of-flight drainage volume

– Sensitivity analysis, global 
optimization, uncertainty analysis

Yin, Xie, Datta-Gupta and Hill, 2011,JPSE, 127, pp. 124-136.
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EPA

Fracture

Matrix

Uncertainty Variables: 

✓ Fracture/EPA/Matrix perm

✓ Elliptical Fracture half axis

Objectives:

1) Match flowing BHP, 

SRV for 0-295 days

2) Predict BHP and gas 

rate for 295-730 days 



Why and How to Build Proxy?

• Typical model run times too long (~multiple hours) – unsuitable for HM

• Solution  build surrogate (proxy) model  (~seconds)

– Create experimental design (incomplete factorial, space-filling LHS)

– Run full-physics model at these parameter combinations

– Fit response surface to observed results (quadratic fit, kriging, other ML models)
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Sensitivity analysis

identify key parameters

Proxy construction

(Response Surface)

Parameter updating by 
GA with proxy

Uncertainty 
analysis
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History Matching Steps

• Sensitivity analysis  with heavy hitters

• Proxy construction using LHS+ kriging

• Drainage volume estimation from TOF

• Screening for DV vis-à-vis SRV (from 
microseismic or RT/PTA)

• Model calibration with GA

• Representative models from clustering

• Uncertainty estimation 
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History Matching Steps

• Sensitivity analysis  with heavy hitters

• Proxy construction using LHS+ kriging

• Drainage volume estimation from TOF

• Screening for DV vis-à-vis SRV (from 
microseismic or RT/PTA)

• Model calibration with GA

• Representative models from clustering

• Uncertainty estimation 
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History Matching with Proxy using BHP
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History Matching with Proxy using BHP and DV
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• Identifying performance 
drivers and completion 
effectiveness for Marcellus 
shale wells

• Predictive model using ANN 
(Artificial Neural Networks)

• Role of different variables 
evaluated

Example [1] 
Shelley et al.
SPE-171003, 2014

Understanding Multi Fractured Horizontal 
Marcellus Completions

Mishra 2022 SPEE
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• Decline curve model 
parameters linked to well 
completion related variables

• DCA Methods – Arps, Duong, 
SEDM, Weibull

• ML methods – RF, SVM, MARS

• Applied to Eagleford wells

• SEDM + SVM most suitable 
for forecasting

Example [2] 
Vyas et al.
SPE-188231, 2017

Modeling Early-Time Rate Decline Using 
Machine Learning

Mishra 2022 SPEE
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• Some shale formation

• Data from ~3000 wells

• Goal Fit well_IP ~ 
f (11 predictors related to 
well completion + location)

• Regression SVM 
(also similar results with 
other techniques)

• Issue missing key causal 
variables in modeling!

An Unsuccessful () Example
Production Data Analysis in Shale Gas Wells
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Recap of Lessons Learned

• Proper problem formulation is crucial

• Data quality/quantity can compromise results

• Predictive modeling is nuanced (many options)

• Multiple competing models may exist

• Unwrapping black-box models is difficult

• Communicating results can be challenging
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Challenges for Acceptance of ML

• Our ML models are not 
very good.

• If I don’t understand the 
model, how can I believe it?

• We are still waiting for the 
“Aha” moment!

• My staff need to learn data 
science, but how?

40Mishra 2022 SPEE

• Manage expectations

• Focus on added value

• Adequate/robust model?

• Key variables ID-ed?

• A new input-output tool

• Mechanistic model alternative

• Formal knowledge of statistics, 
programming (R/Python), ML 

Mishra et al., 2021, JPT (March), 25-30. 



Closing Thoughts – Future

• Focus on issues for making data-driven models more robust 
(i.e., accurate, efficient, understandable, and useful) 

• Promote foundational understanding of ML-related 
technologies among subsurface engineers and geoscientists

• Appropriate mindset 

– NOT curve-fitting exercises using very flexible and powerful algorithms 

– BUT extraction of insights consistent with mechanistic understanding
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So, Where Are We?
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Gartner “Hype” Trajectory
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